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Two recent findings constitute a serious challenge for all existing models of interval timing. First, Hass and 
Hermann (2012) have shown that only variance-based processes will lead to the scalar growth of error that 
is characteristic of human time judgments. Secondly, a major meta-review of over one hundred studies of 
participants’ judgments of interval duration (Block et al., 2010) reveals a striking interaction between the 
way in which temporal judgments are queried (i.e., retrospectively or prospectively) and cognitive load. For 
retrospective time judgments, estimates under high cognitive load are longer than under low cognitive 
load. For prospective judgments, the reverse pattern holds, with increased cognitive load leading to shorter 
estimates. We describe GAMIT, a Gaussian spreading activation model of interval timing, in which the 
decay and sampling rate of an activation trace are differentially affected by cognitive load. The model 
unifies prospective and retrospective time estimation, normally considered separately, by relating them to 
the same underlying process. The scalar property of time estimation arises naturally from the model 
dynamics and the model shows the appropriate interaction between mode of query and cognitive load.  
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1 Introduction 
Time perception is central to cognition in humans and 
other animals (for extended reviews see Buhusi & Meck, 
2005; Gibbon & Allan, 1984; Grondin, 2008, 2010; 
Merchant et al., 2013). It may even be central to explaining 
conditioned learning (Gallistel & Gibbon, 2000). Estimates 
of time intervals on the order of half a second to several 
minutes are affected by many factors including level of 
attention, the intensity of the stimuli, and whether the 
judgments were made prospectively or retrospectively. 
Existing models of interval timing have been successful at 
explaining some of these effects but to date no single 
model captures them all. Moreover, models have focused 

on either prospective or retrospective time estimates, but 
rarely both at the same time. 
In this paper we will focus on the modeling of three key 
phenomena. Firstly, extensive empirical evidence 
(Gibbon, 1977; Gibbon & Allan, 1984; Matell & Meck, 2000; 
Meck, 2003, 2005) suggests that time-estimation errors in 
interval times grow approximately linearly with the size of 
the estimate. Known as the scalar property of time 
estimation, this fact sets a hard constraint on the nature of 
the underlying processes involved in time estimation 
(Hass & Herrmann, 2012). Even though there is some 
disagreement over the validity of the scalar property for 
interval timing (e.g., Bangert et al., 2011; Burr et al., 2013; 
Grondin, 2012; Lewis & Miall, 2009), it has proved to be a 
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formidable obstacle for a number of existing models of 
interval-time judgments (Shi et al., 2013). In the GAMIT 
model, it falls directly out of the (biologically plausible) 
manner in which activation spreads.  
Secondly, in a careful meta-analysis of well over one 
hundred studies, Block et al. (2010) established that 
human adults’ perception of the passage of time differs 
according to whether they are forewarned that they will 
need to make a timing judgment, and are therefore 
actively attending to its passage (prospective time 
estimation), or whether they are required to make an 
unexpected, after-the-fact judgment of the passage of time 
(retrospective time estimation). And thirdly, this difference 
is heavily modulated by cognitive load, showing a classic 
cross-over interaction in which either prospective or 
retrospective judgments are longer depending on whether 
the participant experiences high or low cognitive load 
(Fig. 1).  

These three findings — namely, the scalar property of 
time interval judgments, differential prospective and 
retrospective judgments, and the mediating effect of 
cognitive load —, taken together, pose significant 
challenges for existing computational models of interval-
time judgments. While current models may be able to 
explain some of these phenomena, they need to appeal to 
secondary mechanisms to account for all of them. We will 
show that a model of time perception based on the idea of 
sampling a fading-Gaussian activation trace, GAMIT, 
naturally captures all three of these critical properties of 
interval time estimations. The key intuition is this: 
retrospective time judgments are based on the amount the 
Gaussian has faded; prospective time judgments 
additionally incorporate the rate at which the Gaussian is 
fading. This mechanism will allow us to explain the 
puzzling interaction of retrospective and prospective time 
estimation with high and low cognitive load recently 
reported by Block et al. (2010), thereby providing a single 
unifying explanation for both retrospective and 
prospective time estimates. In addition, we will show that 
the scalar property of time estimation arises naturally 
from the proposed Gaussian decay mechanism.  

In the present article we implement the fading-Gaussian 
model of interval time estimation, using the classic 
equation of spreading activation as an approximation to 
the underlying stochastic processes involved in the spread 
of information in the distributed cognitive system. We 
show that such a model has linear growth in error (and, 
therefore, captures the scalar property), then turn to show 
that it also accounts for both the prospective and 
retrospective time judgment data presented in Block et 
al.’s (2010) meta-analysis.  

However, before discussing GAMIT, we will begin with a 
brief discussion of existing models and their limitations.  

1.1 An Overview of Existing Models of Interval 
Timing 

There are three major paradigms for interval-time 
judgments: (1) pacemaker-accumulator models, (2) 
multiple oscillator-coincidence detector models (also 
sometimes called timestamp models), and (3) memory or 
neural process models. The first class of models relies on 
an internal pacemaker that emits regular, short pulses that 
are counted by an accumulator. The number of pulses 
stored in the accumulator gives the measure of the time 
that has passed (e.g., Gibbon et al., 1984; Taatgen et al., 
2007; Wearden, 1991, 2001). A second class of models relies 
on multiple neuronal oscillators with coincidence 
detectors associating particular patterns of firing with 
given time intervals, effectively time-stamping when an 
event occurs (e.g., Church & Broadbent, 1990; Matell & 
Meck, 2000; Miall, 1989). An alternative type of oscillator-
based timing model (e.g., Brown et al., 2000) assumes that 
some representation of the state of an already-running set 
of oscillators (started, say, at the birth of the individual), is 
associated with each event in memory, in essence, as one 
of the features of the event. The third class of models 
involves recovering the passage of time from a neural 
process that is decaying (Lewis & Miall, 2006; Staddon & 
Higa, 1999) or increasing (Reutimann et al., 2004). Here, 
the current state or change in state of the activation trace 
allows the system to recover the passage of time.  

1.2 Interval Timing and the Scalar Property 

Interval timing operates in the range from half a second to 
several minutes. Here humans and other animals show 
very similar abilities. If human adults or rats are required 
to reproduce a given time interval, their responses will 
have an approximately normal (right skewed) distribution 
peaked at the target value (e.g., Church et al., 1994; Lejeune 
et al., 1997; Rakitin et al., 1998). The scalar property, also 
referred to as time-scale invariance (Gibbon, 1977), states 
that the width of this distribution is directly proportional 
to the length of the interval. So, for example, the standard 
deviation for a distribution of estimates of an interval of 
2X seconds will be (approximately) twice that for an 
interval of X seconds. This is equivalent to saying that time 
perception obeys Weber’s Law (equal relative increments 
in a stimulus produce equal increments in sensation). This 
effect is very widely replicated with humans, pigeons, and 
rodents (see Buhusi et al., 2009; Gibbon et al., 1984, 1997; 
Penney et al., 2008). Similar behavioral responses to time 
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scales can even be found in rate-dependent habituation in 
C. elegans (Staddon & Higa, 1999).  

No model that we are aware of accounts for the scalar 
property as an unavoidable consequence of the way the 
timing mechanism works (Hass & Hermann, 2012; Hass et 
al., 2008). For example, models based on repetitive clock-
like processes have less intrinsic variability than predicted 
by the scalar property and have to introduce ad-hoc 
assumptions as to why the cognitive system cannot use 
these more precise quantities. Hass and Hermann (2012) 
use information theoretic arguments to show how the 
scalar property places several important restrictions on 
the nature of any interval timing mechanism. They show 
that, in order to display scalar error profiles, the neural 
process underlying time perception must be based on a 
measure of growing variance in the system. Power law 
decay functions found in memory-decay models would 
give rise to more than linear growth in error while the 
errors in accumulators and oscillators grow too slowly. 
Accumulator models base their estimates on mean 
number of accumulated ticks or oscillations. However, 
according to the Central Limit Theorem, such estimates 
have errors that grow with the square root of the total. 
Only with logarithmic decay does a constant error around 
activation values convert to a scalar error in magnitude.  

Accumulator models cannot account for the scalar 
property of time without positing a secondary process that 
modifies the shape of the error distribution (Hass & 
Herrmann, 2012). Gibbon (1977) acknowledges this 
problem for the original Scalar Expectancy Theory (SET) 
pacemaker-accumulator model. In SET, the pacemaker is a 
Poisson process and variance in a cumulative Poisson 
process grows according to the square root. Gibbon et al. 
(1997, 1984) get round this by attributing the error 
primarily to a multiplicative factor associated with the 
comparison of accumulated estimates and their 
counterparts in memory, relying on a mathematical 
argument by Gibbon (1992). Decisions as to whether the 
clock has reached a given value are performed by seeing if 
the ratio of the accumulated value and the valued stored 
in memory is within a certain threshold. This ratio induces 
the scalar property and is central to permitting SET to fit 
the empirical data. However, it is unclear why this 
calculation has to be done using a ratio when comparisons 
of the absolute accumulator magnitudes are possible and 
would permit the cognitive system to make temporal 
judgments of greater accuracy. As Staddon and Higa (1999) 
observe, the assumptions behind SET are far from 
parsimonious and the neural mechanisms have not yet 
been described that can explain the full range of 
phenomena observed with interval timing.  

In multiple oscillator models (Church & Broadbent, 
1990; Miall, 1989) timing is measured by a large array of 
neuronal oscillators of different frequencies. An event 
starts all the oscillators simultaneously and at the end of 
the interval a coincidence detection mechanism learns 
which oscillators are in phase with each other. On future 
trials this same subset of the oscillators will also be in 
phase after the same amount of time has passed, allowing 
this signal to be used as timing mechanism. However, in 
general, this signal does not show the necessary scalar 
properties. In Miall’s (1989) Beat-Frequency model, the 
distribution of firing was not normally distributed, having 
a sharp peak at the target time and smaller peaks at the 
major harmonics of the fundamental interval. In addition, 
the width of the peak was not proportional to the length of 
the interval. 

Matell and Meck’s (2004) Striatal Beat-Frequency model 
tried to address these problems. They made a sequence of 
modifications to Miall’s model that induced the scalar 
property. This required globally varying oscillators to 
retain a significant degree of correlation with each other 
even as they drift out of synchrony. Recent work by Buhusi 
and Oprisan (e.g., Buhusi & Oprisan 2013; Oprisan & 
Buhusi, 2011) addresses this issue using more realistic, 
noisy neural oscillators and validates the initial approach 
of Matell and Meck (2004) which as subsequently been 
extended to include an unified account of duration-based 
and beat-based timing mechanisms (e.g., Allman et al., 
2014; Teki et al., 2012). 

A third class of model is based on memory decay and 
neural activation. Activation decay and growth processes 
are ubiquitous and well understood and can account for 
evidence that timing and memory use the same cognitive 
resources (Fortin, 1999; Fortin & Rousseau, 1998) and both 
recruit the dorso-lateral prefrontal cortex (Genovesio et 
al., 2006; Lustig et al., 2005; Wager & Smith, 2003). 
However, derivation of the scalar property is not always 
straightforward in these models. In the Multiple Time 
Scales model (MTS, Staddon & Higa, 1999), a series of leaky 
integrators with power law decay must be carefully 
chained together to approximate the required logarithmic 
function. The Temporal Context Model (TCM, Shankar & 
Howard, 2010) is built from many leaky integrators using 
complex dynamics.  

By contrast, Reutimann et al. (2004) use a single 
climbing neuronal trace that reaches a threshold at the 
expected end of an interval. Single cell recordings in the 
inferotemporal cortex of monkeys have found neurons 
with the appropriate time-dependent firing rates (Kojima 
& Goldman-Rakic, 1982; Komura et al., 2001; Leon & 
Shadlen, 2003) – but see Kononowicz and Van Rijn (2014) 
and Van Rijn et al. (2011) for a different interpretation of 
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climbing neural activity. Learning of new intervals occurs 
via Hebbian learning within the adaptation process, such 
that neuronal firing reaches threshold at an earlier or later 
time. This threshold varies according to a normal 
distribution around a constant level. The interaction of the 
linearly increasing trace and the threshold gives rise to the 
scalar property. Advantages of this are that it is built on a 
single mechanism using well-understood principles of 
synaptic plasticity and the decision rule is built into the 
model itself. But the scalar property derives primarily from 
the Gaussian nature of the threshold which appears to be 
an arbitrary choice to fit the data. Recent work by Simen et 
al. (2011) extends this idea. 

1.3 Retrospective and Prospective Time Estimation 

Time judgments can be made with or without prior notice. 
In retrospective time estimation an individual is asked to 
estimate how long ago an event occurred without prior 
warning that they would have to do so. By contrast, in 
prospective time estimation the individual knows in 
advance that they will be asked to estimate the time that 
has elapsed from a particular event. Historically, these 
have been studied as separate phenomena. We believe 
that prospective and retrospective time estimation are 
intimately related and should not be considered as distinct 
phenomena. While we would not deny the fact that 
retrospective timing (especially for events that occurred 
long ago) relies in part on aspects of episodic memory and 
the reconstruction or reactivation of traces in memory, it 
seems unreasonable to suggest that once the memory has 
been retrieved, the timing mechanism that estimates how 
long ago the event occurred is completely different from 
the one that operates in other contexts. 

In pacemaker-accumulator models the assumption that 
an accumulator is started when a particular event occurs 
makes this mechanism unsuitable for retrospective timing. 
All events are potential candidates for retrospective time 
judgments, which would require a separate accumulator 
for every event in memory that could be recalled and 
about which a time judgment might be requested.  

Multiple oscillator accounts have the same "reset 
difficulty" that besets the pacemaker-accumulator models; 
namely, they imply a separate set of oscillators must be 
initialized for each potential event about which a time 
judgment will be made. An alternative approach would be 
to have a set of oscillators that is set in motion at the 
beginning of life, and that all events are time stamped with 
the values of these oscillators when the event occurs and 
that this set of oscillator values is an intrinsic part of their 
semantic representation. A model of serial order recall 
(Brown et al., 2000) has some of these properties. 
However, it was not developed as a model of interval 

timing and only uses the timestamps to reconstruct the 
order of events in memory. Moreover scalar error growth 
and effects of cognitive load discussed below are not easily 
explained in this framework.  
The problem of a system reset for each potential event 
that might require a time judgment could be avoided by 
suggesting that time perception depends on a memory 
trace (Staddon, 2005). There is, in general, no reset 
problem here because all world events encoded by the 
cognitive system automatically result in representations 
that are governed by the same trace dynamics. That said, 
most activation-trace systems posit a specialist timing 
mechanism that is only recruited when timing is required 
(e.g., Reutimann et al., 2004; Staddon & Higa, 1999) and 
models of this type can only address prospective timing. 
The Temporal Context Model (Shankar & Howard, 2010), 
developed from a model of episodic memory, can 
potentially perform both retrospective and prospective 
timing having been. This model is very complex but its 
authors claim it demonstrates the scalar property, can 
account for timing effects in simple Pavlovian 
conditioning (Drew et al., 2005) and for temporal 
responding found in some hippocampal cells (Pastalkova 
et al., 2008). It is an overlooked feature of episodic 
memory that it deals with temporal stimuli, both when 
recalling the past and making predictions about the future 
(see MacDonald et al., 2014; Schacter et al., 2007). To our 
knowledge, Shankar and Howard (2010) is the first attempt 
to use features of memory directly as a mechanism for 
interval timing. GAMIT has similar motivations but is 
much simpler than TCM. In addition, GAMIT accounts for 
the surprising effects of cognitive load.  

1.4 Cognitive Load in Existing Models 

Our estimates of time passing can be affected by whether 
or not we are actively attending to the passage of time and 
by the amount of additional cognitive load we face. Block 
et al. (2010) analyzed the results from over one hundred 
interval-timing studies and summarized their results in 
the graph shown in Fig. 1. They found a striking interaction 
between the type of time judgment requested and 
cognitive load. High cognitive load increases your 
estimates in the case of retrospective timing, whereas high 
cognitive load decreases your estimates in the case of 
prospective timing. This strong interaction is puzzling for 
two reasons. First, as discussed above, the mere fact that 
there is a difference between prospective and 
retrospective time is a challenge to clock and timestamp 
models. There is no a priori reason to expect a difference 
between these two conditions. Secondly, the interaction 
with cognitive load suggests that cognitive load is not just 
an additive factor (e.g., damping responses across the 
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board), but somehow has opposite effects on timing in 
retrospective and prospective contexts. This is a challenge 
for all existing models of interval timing. 

 
Figure 1. The effects of cognitive load on interval timing based on a meta-
analysis of 82 prospective and 31 retrospective tasks. Duration judgment 
ratio is the ratio between subjective estimates of time and the actual 
objective time that has passed. Error bars show standard errors. 
Reproduced from Block et al. (2010). Permission pending. 

The original SET (Gibbon, 1977; Gibbon et al., 1984) was a 
model of animal timing and so did not consider attention 
effects. It has subsequently been argued that this scalar 
timing model can accommodate attentional effects if 
attention is allowed to affect the switch mechanism 
controlling the flow of pulses into the accumulator 
(Lejeune, 1998, 2000; Meck, 1984; Penney et al., 1996). 
Under high cognitive load the switch would ‘flicker’ on 
and off letting few ticks accumulate and leading to 
decreased prospective estimates. The attentional gate 
hypothesis (AGH - Zakay & Block, 1995; Block & Zakay, 
1996) is an alternative approach that has functionally a 
very similar outcome. In this case, a gating mechanism 
added next to the switch that attenuates the flow of ticks 
from the pacemaker in proportion to the amount of 
attention allocated to the timing aspect of the task. 
Alternatively, Taatgen, van Rijn and Anderson (2007) 
argue that this attentional effect on prospective timing 
would arise as a result of resource sharing if a clock 
module is integrated into a wider and fully developed 
cognitive architecture. This model makes the important 
point that timing can be affected by the allocation of 
limited attentional resources as a result of other processes 
operating in parallel elsewhere within the cognitive 
system (see also Buhusi & Meck, 2009).  

Less work has been done on modeling the effect of 
attention on time perception in other frameworks. Many 
models do not consider attentional effects, in particular, 

the effect of cognitive load on attention (Reutimann et al., 
2004; Shankar & Howard, 2010; Staddon & Higa, 1999). 
Matell and Meck (2004) propose that attention might 
modulate clock speed directly. If decreased attention to 
timing causes the organism’s internal clock to beat slower, 
then it will tend to underestimate the length of intervals. 
This idea is developed further in the time-sharing model 
developed by Buhusi and Meck (2006, 2009). Working 
memory, timing and attention all depend on 
dopaminergic pathways (Cools & D’Esposito, 2011; Lake & 
Meck, 2013; Lustig & Meck, 2005; Meck et al., 2012a). The 
changes observed in interval timing estimates following 
pharmacological interventions that modulate clock speed 
(Coull et al., 2011; Meck, 1996) have been modeled by 
letting dopamine levels affect oscillator frequency (e.g., 
Allman & Meck, 2012; Buhusi & Oprisan, 2013; Oprisan & 
Buhusi, 2011). Nevertheless, none of these models can 
account for the increase in retrospective estimates under 
high cognitive load.  

Far fewer models attempt to explain retrospective 
timing, in part because retrospective timing does not have 
an equivalent in animal behavior. A common theme 
behind all approaches to retrospective timing is that 
intervals are estimated by reconstructing a sequence of 
remembered events. Cognitive load could affect this by 
changing the memorability or numerosity of events. For 
example, in the contextual change model (Block, 2003) 
and the segmentation model (Poynter, 1983) information 
processing demands per se will not affect remembered 
duration but manipulations that involve greater 
interruption to the task or more switching between 
different kinds of activity will. This is consistent with 
findings of Block et al. (2010) for retrospective timing but 
cannot simultaneously account for the interaction.  

In summary, existing models of interval-time judgments 
rely either on a central clock and accumulator, a time 
stamp mechanism, or a transient activation trace to 
explain participants’ judgments of time intervals. 
However, it is currently uncertain which (if any) of these 
models offers the most parsimonious account of scalar 
timing. First of all, in order to do so, they must posit 
secondary mechanisms. In addition, it is unclear how the 
radical differences between retrospective and prospective 
time judgments would emerge from these timing models, 
nor how this difference would be modulated by cognitive 
load.  

In what follows, we will suggest that time is measured 
by estimating the extent to which and the rate at which a 
fading-Gaussian activation trace has decayed. The scalar 
property arises because this activation follows a broadly 
logarithmic decay. The differences that appear under 
cognitive load, between retrospective and prospective 
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estimates, are due to the interaction of two factors: 
activation decay and sampling rate. In retrospective 
timing the cognitive system does not know ahead of time 
that it will be asked to make a time judgment, the trace is 
"sampled" only once at the end of the interval. In 
prospective timing, the cognitive system randomly 
samples the trace throughout the interval. Higher 
cognitive load will have two antagonistic effects. In both 
cases (prospective and retrospective) it will cause the 
activation trace to decay faster leading to apparently 
longer estimates. However, in the prospective case, higher 
cognitive load will also lead to less frequent sampling. This 
leads to a perception that time is actually passing more 
quickly. The system makes an over-correction giving an 
estimate that is actually shorter than before. In what 
follows we first begin by describing the fading-Gaussian 
mechanism itself and then go on to show how the scalar 
property and the Block et al. (2010) interaction arise 
within this model. 

2 GAMIT: A Fading-Gaussian 
Activation-Trace Model of 
Interval Timing 

In this section we describe GAMIT, our model of interval 
timing (The MATLAB® code is available on request.). The 
fading-Gaussian activation model is built on the 
assumption that our sense of time is learned through our 
experience of changes in the world around us. Small 
changes in the activation trace mean little time has 
passed; large changes mean a lot of time has passed. These 
changes allow us to interpret a fading-Gaussian activation 
trace associated with a particular event as the passage of 
time.  

A number of further assumptions underlie the model. 
The first assumption is that the original activation trace 
generated by an event fades over time in a statistically 
predictable manner (this is discussed further in Section 
3.2). The second assumption is that this decay is affected 
by cognitive load. These assumptions alone account for 
retrospective timing. For prospective timing we further 
assume that the cognitive system is sensitive to not only 
this pattern of fading activation, but also to how this 
activation pattern changes over time. Since we are aware 
that we will be required to make a time judgment with 
respect to a particular event, we “sample” the decaying 
trace during the interval. Finally, this sampling occurs less 
frequently when the system is under cognitive load. The 
crucial cue for prospective interval-time estimation will 
not only be the final level of the activation trace generated 
by the initial event, but also the rate at which the activation 
of this trace is changing.  

To implement the GAMIT model, we begin with a 
cluster of cortical columns. The activation in the central 
column corresponds to an event in the world that is 
registered in memory. This event may be the passage of a 
car on a street, the dropping of a dish, or the sound of a 
beep in a laboratory time perception experiment. 
Activation then spreads across the cortical columns as 
follows. 

 If we designate the activation of the ith column at time 
step t by Ai(t), its activation at time t +1 is determined by 
the following equation: 

 

where α is the fraction of activation that remains in 
column i on each time step (i.e., α = 1-leakage); β is the 
fraction of activation spread from each immediate 
neighbor of i on each time step; ξ is a noise parameter. The 
values of α and β must be chosen so that the total activity 
of the system neither rapidly decreases to zero nor 
increases exponentially. Unless otherwise stated, we used 
values of α = 0.7, β = 0.14952 and ξ = 0.000025.  

We start by assuming that the default initial activation 
of the central column (i.e., i = 0), is 1 at t = 0, which 
produces a narrow “activation spike” on that column. On 
each time step, activation in the central column decreases 
and spreads to neighboring columns. This is illustrated by 
the Gaussians in Fig. 2. 

 

 
Figure 2. The activation of the initial Gaussian above the central column 
fades and spreads with time. 

There is ample neurobiological evidence for this type of 
spreading-activation mechanism (e.g., Amari, 1977, 1980; 
Capaday et al., 2011; Grinvald et al., 1994; Grossberg, 1980; 
Herman et al., 1993; Koch & Segev, 1998). It is associated 
with memory-like processes in the cortex and provides a 
time-dependent signal with suitable statistical properties 
for interval timing. In particular, when activation spreads, 
the amount of change in the overall activation of the trace 
allows us to estimate the length of the time interval since 
the onset of the stimulus event.  

In the simulations reported below, we argue that the 
cognitive system is sensitive to both the height of the 
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fading Gaussian at time t (designated by H(t)) and the 
total activation of the fading Gaussian at time t (i.e., the 
sum of the activations of all columns to which activation 
has spread, a value which we will call A(t)). The first 
variable, H(t), is a measure of how salient the Gaussian is 
with respect to background noise. The second variable, 
A(t), is a measure of how much the overall signal has 
faded. In our model, the activation values on which time 
estimates are based is the sum of these two values: S(t) = 
H(t) +A(t). Not only is this quantity easy to compute, it 
provides a stable estimate of the long-term average of the 
underlying stochastic diffusion process. Henceforth, when 
we refer to activation as it relates to time estimation in our 
model, we will mean this combined spreading-activation 
value, S(t).  

It is this value S(t) that gives the estimate for how much 
time has passed since the initial event. In the retrospective 
case this is straightforward. At the end of the interval, the 
cognitive system makes a single estimate of how far the 
activation has decayed and compares this value to a 
reference curve built up from a lifetime of experience. 
Although the underlying process may be stochastic it is 
statistically predictable. Therefore, a certain amount of 
decay corresponds to a certain amount of time and the 
greater the decay the longer the interval. The noise in the 
system and the error when estimating the decay leads to 
the error in the estimates. We will show that it has the 
scalar property. In the prospective case additional 
information is available, as the cognitive system will have 
made a series of ‘sampling’ estimates during the interval.  

3 Time Estimates and the 
Scalar Property 

In this section we focus on the scalar property (Gibbon, 
1977; Gibbon et al., 1984) of interval-time estimation – 
namely, that time-estimation error is a linear function of 
the amount of time estimated. We will begin by discussing 
certain mathematical and statistical considerations that 
buttress the plausibility of a spreading-activation model. 
We then discuss how time estimates are generated in the 
GAMIT model and the potential sources of error this 
introduces. We conclude this section by presenting a 
simulation that shows that our fading-Gaussian model 
does, indeed, implement the scalar property for interval-
time estimation.  

Hass and Hermann (2012) show mathematically that the 
neural process underlying time perception must be based 
on a measure of growing variance in the system. We 
suggest that timing is based on statistical estimates of a 
stochastic process whose long-term expected value is 
equivalent to a spreading of activation. Such processes are 

common in nature. For example, variance grows linearly 
with time in both diffusion processes (Einstein, 1905) and 
maximum entropy distributions (Jaynes, 1957). Our model 
is based on the idea that estimating the extent of the 
activation spread lets us estimate the length of the 
interval. This is an inherently noisy and stochastic process 
but we know from work in perceptual psychophysics 
(Ernst & Banks, 2002; Knill & Richards, 1996) and 
computational neuroscience (Paninski et al., 2004; Pouget 
et al., 2003) that the brain can make near optimal use of 
inherently noisy signals.  

The central idea of the GAMIT model is that intervals 
are estimated by determining how much a stochastic 
activation trace has faded and comparing this to a 
reference curve (white line in Figure 3) built from a 
lifetime of experience (Fig. 3). 

 

 
Figure 3. One thousand individual activation-decay curves (in red), 
running for 1000 time steps, are averaged to create the Reference Curve 
(white). 

This process has several steps, each of which introduces a 
source of error. Firstly, each individual curve will evolve 
somewhat differently leading to a different activation level 
at the target time. When compared to the reference curve, 
these activations lead to different estimates for the same 
target interval (Fig. 4). 

Secondly, the activation of a single curve cannot be 
known precisely, leading to an additional sampling error, 
illustrated by the error distribution on the vertical axis of 
Fig. 4. The reference curve will be the average of many 
previous individual curves and would, therefore, have an 
associated uncertainty. However, in the present paper we 
do not address how the lifetime curve might be generated 
(but see Addyman et al., 2011), and, therefore, we have not 
included this in the present discussion. 

The crucial scalar property of interval-time estimation 
says that time-estimation error will increase linearly with 
the time to be estimated. To test the scalar property, we 
assume that the current activation-decay curve is decaying 
as shown by the red curve in Fig. 4. (Note this curve differs 
slightly from the (blue) Reference activation-decay curve, 
the latter being the average of a lifetime of "current 
activation-decay curves.")  
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Figure 4. Estimating the activation of a single curve and comparing it to 
the lifetime (or “typical”) Reference activation-decay curve introduces 
two sources of error. One is associated with the evolution of the decay 
curve and one comes from the sampling process. 

At a particular time (here t = 800 time units), a time 
judgment is requested. As shown in Fig. 4, an "actual 
elapsed time" (i.e., t = 800) corresponds to an activation 
level of the current activation curve of S = 0.652. There is a 
Gaussian sampling error distribution around S with σ = 
0.05. We sample from this distribution and get a value of S 
= 0.656. The corresponding time value, t, for S = 0.656 is 
"read off" the Reference activation-decay curve. This value, 
the "perceived elapsed time" is t = 1075. Thus, the time-
estimation error (E) is the difference between the 
perceived elapsed time and the actual elapsed time, 
which, in this case, is 275 time units. 

We considered all time values, t, between t = 1 and t = 
750 and calculated the time-estimation error, E, as 
calculated above, for each of these time values. Averaged 
over 250 runs of the program, we obtain a linear fit (E = 
0.23t) to the data with an r of 0.99 (Fig. 5). The activation 
decay in GAMIT satisfies Hass and Herrmann’s (2012) 
variance requirements for scalar growth in time 
estimation error. In other words, the scalar property falls 
directly out of the core neurocomputational principles of 
GAMIT, and does not require the positing of any further 
secondary mechanisms. 

4 Modeling Retrospective and 
Prospective Time Judgments 
under Cognitive Load 

A key feature of our model is that the activation decay and 
the sampling rate of the activation trace are differentially 
affected by cognitive loads. To begin with, we assume that 
greater cognitive load causes more rapid decay of the trace 
activation, due primarily to global inhibition from other 
concurrent tasks that require encoding and storing 
information in memory (Fig. 6). This alone allows us to 
explain differences in retrospective time estimation (Fig. 

7). However, in the case of prospective time estimation, 
when it is known ahead of time that a time judgment will 
be required, we further propose that the state of the 
activation trace will be repeatedly sampled. Sampling can 
be thought of in our model as “attentional saccades” to the 
event trace. Just as visual saccades involve a switch of 
visual attention, we suggest that mental saccades involve a 
switch of focus of attention to the trace. Just as the rate of 
visual saccading is interfered with by increased cognitive 
load (Halliday & Carpenter, 2010; Stuyven et al., 2000), we 
suggest that the same is true of attentional saccading. In 
other words, attentional resources are limited and must be 
distributed among the currently active tasks in working 
memory. Similarly, as cognitive load increases and more 
tasks must be processed with limited attentional 
resources, fewer resources (attentional saccades) are 
allocated to attending to the activation trace of the event 
about which a time judgment will be made (see also the 
time-sharing hypothesis of Buhusi & Meck, 2006)1.  

 

 
Figure 5. Time-estimation error (E) grows linearly with the duration of 
the time interval estimated. Results were averaged over 250 runs. 

Over time the cognitive system learns a very simple 
association – namely, the more the activation of a trace 
has changed since it was last sampled, the more time that 
has elapsed. In other words, small changes in activation 
correspond to small changes in time; large changes in 
activation correspond to large changes in time. This is one 
of the key insights to understanding our fading-Gaussian 
model of interval-time estimation. 

4.1 Retrospective Time Estimation 

As we said at the start of Section 3 above, our explanation 
of both retrospective and prospective time estimation 
relies on the assumption that we have, over time, learned a 

                                                                            
1 One helpful analogy is to compare this to time-sharing in a computer 
CPU. Tasks, both in the computer and in the cognitive system, must be 
processed simultaneously. As the load on the CPU increases, fewer time 
slices can be allocated to each task that needs to be performed.  
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typical or “average” activation-decay curve for activation 
traces of events and that this curve serves as a reference 
curve for time estimation (Fig. 3). This curve can be 
thought of as a running average of a lifetime of 
experiences. We further assume that under higher-than-
normal cognitive load, there will be somewhat less 
activation, S(t), in the trace because it is being actively 
inhibited by the other concurrent tasks in working 
memory ("High cognitive load" curve, Fig. 6). This means 
that the activation curve falls somewhat more rapidly than 
normal under high cognitive load.  

 

 
Figure 6. The typical activation-decay curve, S(t), learned by experience is 
shown in blue. Under high cognitive load, activation falls off more 
quickly than under typical cognitive load. Under (very) low cognitive 
load (curve in pink) activation falls off more slowly than typical load 
conditions. 

In retrospective time judgment there is no prior 
announcement that a time judgment will have to be made. 
This means that there is no sampling of the activation trace 
prior to the moment when the time judgment must be 
made, and corresponds to what Zakay and Block (2004) 
refer to as “remembered duration,” since there is no on-
going experience of the time interval between the 
moment of the stimulus event and the time when a time 
judgment must be made. Thus, the only cue to the amount 
of time that has passed is the total activation of the 
memory trace.  

4.1.1 Retrospective time estimation under high 
cognitive load 

Under high cognitive load we assume that there are a 
greater-than-normal number of distracting tasks 
interfering with the activation trace of the stimulus event. 
This means that the activation trace will “squash and 
spread” more rapidly than normal, meaning that 
activation will fall more rapidly than normal (red curve in 
Fig. 7).  

Suppose that under high cognitive load, at the moment 
of a time judgment (e.g., t = 600), the activation value is 
approximately 0.66. But, in memory, there is only a stored 
representation of the activation curve under typical 
cognitive load. Based on this reference activation-decay 
curve (i.e., the blue curve in Figs. 3, 4 and 6), an activation 

level of 0.66 occurs, not at t = 600, but rather, at t = 710. 
Thus, when asked for a (retrospective) time judgment at t 
= 600, we reply 710. In other words, we overestimate the 
amount of time that has passed under high cognitive load. 
This concurs with Block et al.’s (2010) finding.  

 

 
Figure 7. A run of GAMIT retrospectively estimating time under high 
cognitive load. 

4.2 Prospective Time Estimation 

In prospective time estimation the participant knows 
ahead of time that a time judgment will be required about 
a particular stimulus event at some point in the future. 
This implies an on-going monitoring of the activation 
trace, a process that engenders what Zakay and Block 
(2004) refer to as “experiencing time”. In other words, the 
activation trace associated with that event will be sampled 
more or less frequently until the time estimation has been 
made. The frequency of this sampling -- what we refer to 
as “attentional saccading” — depends on cognitive load. In 
GAMIT, this attentional sampling is what provides 
information about the rate-of-change of total activation of 
the trace. Crucially, we assume that there is a “typical” 
sampling profile, not necessarily uniform, that defines 
when and how often sampling of the activation trace 
occurs under typical cognitive load in the context of 
prospective time estimation. We assume that, under high 
cognitive load, there is approximately the same sampling 
distribution as under typical cognitive load, the only 
difference being that this “attentional saccading” to the 
activation trace occurs less frequently. The lower sampling 
frequency is due to the fact that sampling requires 
cognitive resources and that, under high cognitive load, 
some of those limited resources are being diverted to 
additional mental activities.  

We argue that our perception of the passage of time is 
intimately related to the rate of this sampling of the 
activation trace. To understand this, an analogy is helpful. 
Consider some event that unfolds over approximately 30 
seconds, say, a woman walking down a street. Now, 
assume that we have two cameras at the scene: the first 
films this event at a “typical” speed of 20 frames/sec.; the 
second camera must film, not only this event, but 
simultaneously, some other event nearby. The latter 
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camera shoots one frame of the walking woman, followed 
by one frame of the other event, then one frame of the 
woman, etc. The film of the woman walking is put 
together in the cutting room and, of course, contains only 
10 frames/second of the woman walking. We show both 
films to people and ask them in which of the two films 
time seems to pass most quickly. They will reply that the 
flow of time is faster in the latter film (Eagleman, 2004). 
We suggest that the reason is because between each image 
in the 20 frames/sec case very little changes, whereas there 
is a much greater change between each image in the 10 
frames/sec case. Thus, since we have learned over the 
course of our lifetime that, on average, small changes in 
the world correspond to small changes in time and large 
changes in the world correspond to large changes in time, 
we perceive time as passing more quickly in the latter film.  

We suggest that sampling of the activation trace for the 
stimulus event corresponds precisely to the above analogy. 
Just as the first camera is sampling the event consisting of 
the women walking at the “typical” rate of one frame every 
0.05 seconds and the second camera, because it must also 
film another event simultaneously, is only sampling the 
woman walking at the rate of one frame every 0.1 seconds, 
the sampling of the activation trace associated with the 
event about which a time judgment is to be made occurs 
at different frequencies depending on cognitive load. Just 
as viewers’ perception of the passage of time in a film 
varies depending on the speed at which the event is 
filmed, we suggest that the same holds for prospective 
time estimation: as the sampling rate slows down, the 
subjective experience of the passage of time is compressed 
(i.e., speeds up).  

4.2.1 Prospective time estimation under high 
cognitive load 

We claim that prospective time estimations rely on, not 
only the amount of activation decay, but also the rate at 
which the activation is decaying, as measured by activation 
change between attentional saccades. To calculate the 
approximate rate of change of the decreasing activation 
function, a small number of recent activation changes 
between successive samplings of the activation curve are 
kept in memory. (In our simulations, the 7 most recent 
activation changes were stored.) The average of these 
values provides an estimate of the rate at which the 
activation curve is falling. Over time, the cognitive system 
under normal cognitive load learns how much the 
activation trace associated with an event typically changes 
between attentional saccades. This value, stored in 
memory, we call ΔTYPICAL-LOAD . Under high cognitive load 
we sample the curve less often because some of the 
resources devoted to attention saccading are devoted to 

the other tasks (Fig. 8). Thus, the amount of activation 
change between each attentional saccade, ΔHIGH-LOAD , is 
greater. (For low cognitive load, ΔLOW-LOAD is calculated in 
the same way, except there is more than average sampling 
of the activation trace.) This is the intuition behind the 
definition of a time-compression (or time-dilation) factor 

TYPICAL LOAD

CURRENT LOAD

−

−

Δ
Φ =

Δ
 for prospective time judgments. A 

prospective time estimate, P, is the retrospective time 
estimate, R, adjusted by the multiplicative time-
compression/dilation factor, Φ. In other words, P = RΦ.  

 

 
Figure 8. Prospective time estimation under high cognitive load. The blue 
curve shows the evolution of activation under typical cognitive load. For 
prospective time estimation under typical cognitive load the frequency of 
sampling of this curve is shown by the blue square markers. 

In the example in Fig. 8, under typical cognitive load, 
Δtypical-load is approximately 0.214. Because under high 
cognitive load sampling occurs half as often as in the 
typical-load condition, the activation changes between 
samplings is greater than in the typical-load condition 
and, as a result, Δhigh-load is approximately 0.321. Thus, 
we can calculate Φ to be 0.214/0.321 = 0.667. This means 
that under high cognitive load we would experience a time 
compression of 0.667 of the time estimate we would have 
had under retrospective time estimation.  
Recall that under retrospective timing conditions, where 
there is no sampling (Fig. 7), we overestimated time. At t = 
600 (the real interval time), we estimated it to be tR = 710. 
Now, to calculate the prospective time estimate, we start 
with tR, the retrospective time estimate and adjust this 
value by the multiplicative time-compression/time-
dilation factor, Φ (i.e., P = RΦ). In other words, the 
prospective time estimate, tP, of the actual time of t = 600 
would be: 710*0.667 467Pt = = . In other words, in the 

prospective timing condition, we perceive t = 600 to be t = 
467. 

We calculate Φ in an identical fashion for the low 
cognitive load condition, in which there is more than 
average sampling of the activation trace.  
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4.3 Simulation of Retrospective and Prospective 
Time Estimation Together 

In order to simulate changes in cognitive load in GAMIT, 
we varied the amount of activation spread to neighboring 
columns, thereby causing the activation curve to fall more 
or less rapidly2. To simulate high cognitive load conditions 
we decreased the value of β to 0.14946. For lower-than-
typical cognitive load, the value of β was increased to 
0.14955. The other two parameters remained unchanged. 
We ran the program 20 times under both high and low 
load conditions and averaged the results of these 
simulations.  

 
Figure 9. Performance of the GAMIT model on prospective/retrospective 
time judgments under high and low cognitive load. Results averaged over 
20 runs of the program. SD error bars are also plotted. 

We assume that a time judgment for both the 
retrospective and prospective conditions would be made 
at t = 600. There was no sampling of the activation trace in 
the retrospective time-estimation condition. In the 
prospective time-estimation condition under typical 
cognitive load, we assumed that by t = 600 there would 
have been 20 samplings of the activation trace. Under high 
cognitive load, this was decreased by 50% to 10. Under 
lower-than-normal cognitive load, we increased this 
amount of sampling by 10%. This asymmetry is intended 
to reflect the fact that cognitive load can only be decreased 

                                                                            
2 People tend to underestimate (or over-produce) objective durations 
leading to mean judgment ratios less than 1. GAMIT includes a bias 
parameter to model variations in risk judgments. In all current 
simulations, the parameter does not play a functional role, and is fixed at 
0.87 which is the global average of those values reported in Block et al. 
(2010). 

slightly with respect to the typical cognitive load 
condition, whereas it can be increased substantially. The 
results are shown in Fig. 9. As in Block et al. (2010), an 
ANOVA showed that there is no significant main effect of 
either Cognitive Load or Retrospective-Prospective time 
estimation. However, again, as in Block et al., there was a 
highly significant interaction between the two main 
variables (F(1, 76) = 19.3, p < .0001, η2 = 0.2). In other words, 
GAMIT qualitatively reproduces the interaction between 
cognitive load and mean time-judgment duration ratio 
reported in Block et al. (2010).  

4.4 Summary of Prospective and Retrospective 
Time Estimation in GAMIT: P = RФ 

A central claim of the GAMIT model is that Prospective 
time estimation (P) is equivalent to Retrospective time 
estimation (R) adjusted by a time-compression/time-
dilation factor (Φ) that is a function of cognitive load, i.e. P 
= RΦ.  

In retrospective time estimation, there is no sampling of 
the activation trace since participants do not know ahead 
of time that a time judgment will be required. At the 
moment when they are asked to perform a time judgment 
about how long ago a particular event happened, they rely 
on the value of the total activation of the activation trace 
at that moment in time. However, in prospective time 
estimation participants know ahead of time that they will 
be asked for a time judgment about a particular event. 
They, therefore, devote attentional resources specifically 
to the event in question. The amount of attention paid to 
the activation trace determines how much their 
perception of the passage of time with respect to that 
event is speeded up or slowed down. Moreover, the 
amount of attention paid to the activation trace varies as a 
function of cognitive load. We suggest that in prospective 
time estimations we adjust our baseline memory of the 
event based on this perceived speeding up or slowing 
down of time. In short, prospective time estimation is 
simply retrospective time estimation “adjusted” by the 
perceived rate of change of the passage of time and this 
perception of how fast time is passing depends on 
cognitive load.  

Finally, note that the scalar property demonstrated for 
retrospective time judgments (Section 3) also holds for 
prospective time estimation. Indeed, prospective time 
estimation is determined by means of a multiplicative 
factor of the activation curve for a retrospective time 
judgment (i.e., ). Multiplying this linear 
relationship by a constant will not affect the linearity of 
the relationship. Thus, for both retrospective and 
prospective time estimation, we have a linear relationship 
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between the actual amount of time (t) and the time-
estimation error (E) of t. 

5 General Discussion  
We have described a "fading-Gaussian" model of interval-
time estimation, GAMIT, which is based on the classic 
equation of spreading activation as an approximation to 
the underlying stochastic processes involved in the spread 
of information in a distributed cognitive system. The 
model naturally produces scale-invariant time estimates 
and captures participants' prospective and retrospective 
time estimates, in addition to capturing the interaction of 
these estimates with changes in cognitive load. All three of 
these phenomena remain important challenges for 
existing accumulator-based, oscillator-based, and 
memory-based models. GAMIT is based on the processes 
of activation decay and activation-trace sampling, both of 
which are ubiquitous within the brain and cognitive 
system. In addition, it does not suffer from the reset 
problem that plagues accumulator and oscillator-based 
models of interval timing. Finally, because a core 
component of the timing mechanisms (the reference 
trace) is based on a lifetime of past experiences of 
observing change in the world, GAMIT provides an 
approach to timing in which information about the 
passage of time is embedded in the world rather than 
constructed in an abstract cognitive module. 

The model takes seriously recent analyses of the scalar 
property of time showing that mechanisms underlying 
time estimation should be noisy, stochastic and based on 
the spread of information (Buhusi & Oprisan, 2013; Hass & 
Hermann, 2012). As far as we are aware, this is the first 
model that is actually built directly from this neural 
information-processing assumption showing how very 
common, cognitive-level phenomena are rooted in the 
dynamics of neural information processing. As such, the 
model constitutes a strong bridge between the cognitive 
and neural-timing communities that have traditionally 
worked separately. 

A second contribution is that the GAMIT model 
provides a unified account of retrospective and 
prospective time judgments. These have traditionally been 
studied as separate phenomena (Block et al., 2010; Zakay & 
Block, 2004; but see Brown & Stubbs, 1992) largely because 
(1) it is hard for timestamp and accumulator-based models 
to provide any explanation of retrospective timing, and (2) 
they are differentially affected by attention and cognitive 
load, suggesting that different underlying processes may 
be at play. In contrast to these views, our model suggests 
that the same underlying mechanisms (namely, decay and 
sampling) operate in both contexts. What varies is the 

amount of sampling that occurs between the two contexts: 
no sampling occurs on retrospective time estimates, 
whereas repeated sampling occurs in the prospective time 
estimates. The effect of cognitive load on interval-time 
perception is explained by how cognitive load affects the 
rate of sampling of the activation trace. Thus, the GAMIT 
model provides a parsimonious account of interval-time 
judgments.  

In addition, we suggest that the estimation of time is 
tuned across the lifetime. The reference curve that is used 
to estimate the passage of time by sampling the decaying 
trace is the result of multiple experiences of the passage of 
time. Although the current model does not address this 
issue directly, it also suggests a possible mechanism for 
explaining developmental differences in interval timing 
(see Addyman et al., 2011 for further discussion) 

GAMIT bears some resemblance to other trace-based 
models of item memory (e.g., Barrouillet et al., 2004; 
Brown et al., 2000; Lépine et al., 2005) in that they posit 
decay mechanisms and sampling of decaying traces. 
However, these models are concerned with the retrieval of 
items from memory, and possibly order effects in memory 
retrieval and, in general, return rank order information of 
elements presented in a sequence. However, they do not 
produce duration estimates. Nor, of course, do they 
address the scalar property of time or the effects of 
cognitive load on time judgments. The fact that there is 
some processing similarity between our model and these 
memory models underscores the generality and 
parsimony of our approach. 

5.1 Model Predictions 

A number of predictions fall out of this differential-
sampling hypothesis. For example, if cognitive load is 
increased to the point that no sampling of the activation 
trace is possible, then a dramatic flip to the retrospective 
time estimate should occur. Further, there is a ceiling 
effect in the direction of low cognitive load compared to 
typical cognitive load. Whereas it is always possible to 
increase cognitive load, it can only be decreased to a 
limited extent below typical cognitive load. This is the 
reason that we will never get very large values of Φ in low 
cognitive-load situations, which would imply that in this 
condition we do not vastly overestimate the passage of 
time. 

Because the reference trace reflects a lifetime of 
accumulated experience, individuals who have lived for a 
prolonged period in higher cognitive-load environments 
(e.g., air-traffic controllers) will have a different reference 
curve from that of individuals having experienced a lesser 
cognitive-load on average. Or alternately, they will have 
two separate context-dependent reference curves, one for 
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their high cognitive-load job, the other for their normal 
cognitive-load existence. The model, therefore, predicts 
that these individuals will experience the passage of time 
in a high cognitive load situation differently than the rest 
of us. In short, they will be able to significantly more 
accurate in their time-estimates than people who have no 
high cognitive-load reference curve. For example, their 
prospective time estimates should be less affected by time 
dilation than for those people who have experienced 
relatively low cognitive loads during their lifetimes.  

A further prediction is that younger children should 
show greater between-participant variability than older 
children and adults in their estimates of time. As children 
get older, their sample of experiences increases, and their 
average reference trace will converge to a mean 
representation comparable to the rest of the participants. 

5.2 Model Limitations 

In all models of time estimation based on a fading 
activation trace, including GAMIT, there is a potential 
issue of confusing stimulus recency with stimulus 
repetition (McCormack & Russell, 1997; McLaren, 1994; 
Shaw & Aggleton, 1994). The idea is that, upon seeing the 
initial stimulus, the corresponding activation would 
assume its maximum value. Thereafter, that activation 
would decay and the amount of decay would serve as the 
basis for time estimation. But what if the initial stimulus 
were presented again before the time estimate was made? 
Would this not return the activation trace associated with 
the stimulus to its maximum value, thereby preventing us 
from making a time judgment about how long ago the 
stimulus had first been presented? The answer, we believe, 
is provided by the Greek philosopher Heraclitus, famous 
for his claim that “No one ever steps in the same river 
twice.” The point is that the second presentation of the 
stimulus is not the same as the first presentation for the 
simple reason that part of the internal representation of 
the second stimulus contains the first presentation of the 
stimulus. In other words, while it might have some 
influence on the initial activation trace, the second 
presentation of the stimulus would be perceived as a 
different event (unless, of course, short-term memory 
deficits meant that there was no recollection of the first 
presentation) and would be associated with a different 
trace.  

In its current form, the GAMIT model captures the 
pattern of meta-data reported in Block et al. (2010). It does 
not, however, model data from individual experiments. 
However, although input-output representations would 
need to vary according to the task constraints, the core 
timing mechanisms would remain the same for all of these 
timing studies. 

How might this model work with filled intervals? We 
speculate that the stimulus event is perceived as a "change 
in the state of the world". So, in a laboratory setting, a very 
short beep would represent a change in the world, 
(actually two, virtually simultaneous changes, from no 
sound to the beep and back to no sound). In the case of a 
prolonged beep (i.e., a filled interval), the first change in 
the world would occur at the onset of the beep (i.e., no 
sound to sound) and the second would occur when the 
beep stopped (i.e., sound to no sound). In both cases, it is 
the change in the world that triggers the activation trace, 
rather than the sound itself. 

Two central assumptions we make when considering 
the scalar property of time is that the underlying 
information processing is stochastic and that the 
activation trace decays logarithmically. However, for 
implementational reasons, we have used a continuous 
diffusion process as a time-averaged approximation of this 
stochastic spread of information. This is analogous to the 
use of continuous activation functions to approximate the 
stochastic updating of neurons in large neural networks 
(Hertz et al., 1991). These continuous approximations can 
be shown to be equivalent to the long-term time-averaged 
profile of the stochastic process. Nevertheless, in future 
implementations of the model the actual stochastic 
processes should be constructed. 

6 Conclusion 
In summary, we have described a parsimonious model of 
interval timing that is based on ubiquitous neural and 
cognitive processes. It provides a unifying account of 
retrospective and prospective timing, captures the 
modulating effects of cognitive load on both prospective 
and retrospective timing, and in contrast to other models, 
intrinsically captures the scalar property of time 
judgments. 
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