A. T. Clason

CONTENTS

1. INTRODUCTION
2. THE GEOGRAPHICAL SITUATION
3. THE SURROUNDING A REA
4. THE FAUNAL REMAINS
5. THE SPECIES
5.1. Mammals
5.2. Birds
5.3. Fish
5.4. Reptiles
5.5. Molluscs
6. DISCUSSI()N
6.1. The Vinča period
6.2. The La Tène period (VI)
7. LITERATURE

i. INTR()DUCTI()N

Gomolava is aprehistoricand early historic dwelling mound or tell, situated on the left bank of the Sava river ca. 60 km north-west from Belgrade near the village of Hrtkovci (fig. i). The place had long been known as a terrain where prehistoric objects could be collected, but it was only in the early fifties that small excavations were carried out to establish the real nature of the place (Rašajski i954). In 1970 it was finally decided to excavate the whole mound systematicallỵ (Jovanović i 97 I). This decision was in the first place taken because each year large portions of the mound fall into the Sava, and the tell will disappear anyway in the next twenty years. Another reason is that other "classical" prehistoric sites like Starčevo and Vinča were excavated in a period when the chief object of the investigations was to establish the sequence of the cultures. The study of the economy, stockbreeding, hunting, agriculture and the oecology of the sites were neglected. At present the sequences are more or less known (Brukner, Jovanović, Tacić 1974) and Gomolava, whereanimal bones and chared seeds are well preserved, will provide an excellent opportunity to learn more about the development of agriculture in the Voivodina. The mound comprises at least eight major occupation layers, of which the oldest belongs to the Neolithic Vinča period, the youngest to a Medieval settlement and Necropolis (table i). The large scale excavations are being carried out by the Vojvodjanski Muzej at Novi Sad under the direction of Dr. B. Brukner, Dr. B. Jovanović and Dr. N. Tacić.

The southern end of a high ridge along the Sava where at present a small stream joins the river was selected for the settlement. In time the settled area grew into a more or less round dwelling mound, half of which has been taken away by the Sava. The remaining half lies with its longest axis parallel to the river and is divided by a shallow, ca. 25 cm deep, east-west depression into two plateaus. The northern plateau which comprises ca. $1 / 3$ of the remaining mound, has been excavated to the virgin soil. For the excavation the area was divided in six blocks (I-VI), (fig. 2). During the excavation large numbers of animal bones were collected by hand. Till 1974 none of the material was sieved. In i 974 we started to take samples to be sieved from different places of
mains of small mammals, birds, reptiles, amphibians and fish species could be collected that had hitherto escaped our notice.

2. THE GEOGRAPHICAI, SITUATION

The mound of Gomolava is situated at the western entrance to the southeastern plain of the Voivodina, which is a part of the valley system of the Sava and the Danube. This plain is bounded in the south by the Sava river with low hills sometimes reaching to its right bank, in the west by the Danube, in the north by the Fruška Gora, and in the west mostly by the Sava river. Gomolava lies on the outer bank of a sharp bend of the Sava to the south, ca. 7.5 km south of the 100 m line of the low hills of the Fruška Gora. The highest peaks of this range are between 450 and 520 m in height. In the north, these hills slope steeply to the Danube (fig. 3). During the Middle Neolithic, the period of the Vinča habitation, the plain, and the Fruška Gora and the hills south of Šabac as well, were covered with mixed deciduous oak forests. In the woods were small clearings which could have been natural or could have been the result of the activities of farmers, who cut down the trees to obtain arable fields and abandoned them after

Fig. 1. The geographic situation of Gomolava.

Table 1 . The short relative-chronological division of the cultural stratum on Gomolava would be as above-mentioned.

```
G()MOLAVA I
    a - the older dwelling - horizon of Vinča group.
    b - the younger dwelling - horizon of Vinča
            group.
```

GOMIOLAVA II
a - the horizon with Lengyel pottery.
b - the horizon with prototiszapolgar and Tiszapolgar pottery.

G()MOLAVA III

a - the horizon of pits of Baden group.
b - the dwelling horizon of Kostolac group.
c - the horizon with Vučedol pottery.

G()MOLAVA IV
a - the horizon (Omoljica-Vatin group.
b - the dwelling horizon of group Belegiš I.
c - the dwelling horizon of group Belegiš II.
G()M()LAVA V
The horizon of Bosut group (Basarabi complex).

G()M()LAVA VI
a - the older dwelling horizon of La 'Tène settlement.
b - the younger dwelling horizon of La Tène settlement.
c - La Tène - Early Roman dwelling horizon.
G()MOLAVA VII
The dwelling horizon of Roman-provincial settlement.

GOMOLAVA VIII

The horizon of Middle Age settlement and necropolis.
sometime. Those clearings were covered with grass, shrubs, or light wood, depending on how long ago the fields were abandoned.

The low-lying alluvial valleys of the rivers were marshy, with small streams and ponds in between
heavy vegetation. The Obedska Bara, some 20 km south-east of Gomolava, gives an idea of what those marshy areas might have looked like. A marshy strip of land in an old, cut-off arm of the Sava that a bounds in bird life, while red deer, roe cleer and wild boar still live in the woods on the higher banks.

3. THE SURR()UNDING AREA

The dwelling mound rests on the southern end of a natural elevation along the Sava. In the east is a slight depression at the foot of the mound, some 100 m in width, bordered by two shallow ridges some 2 m in height at right angles to the river and the mound. On the northern ridge a street of the present day village of Hrtkovci has been built. The ridges are separated by a small, now canalized, stream, that flows just south of Gomolava into the Sava. It is said that in former times this stream ran through the depression at the foot of Gomolava and joined the Sava north of the mound. In this way it was part of the defence system of the La Tène village in the first century A.D.

In the twentieth century a dyke was built south of Gomolava along the left bank of the river, which begins at the southern end of the high bank on which Gomolava was built. The dykeprotects the low-lying areas that were annually flooded by the Sava. In ancient times wooded marshes might have existed in these low-lying parts. They are several 100 meters deep and at present planted with poplar woods. There are still remnants of the old mixed oak forests that once covered the higher ground just north of Gomolava and south of the village of Hrtkovec between the road to Sabac and the Sava. The area on the other side of the river is much lower than on the east bank and must have formed an extensive marsh area in former times.

Near Gomolava the Sava is at least 400 m wide at present. What the situation was in prehistoric times is difficult to reconstruct definitely, but it is reasonable to suppose that at that time, too, the river and its marshes formed a border area, as it still does at present. The arable land and the grazing fields or grazing woods used by the farmers must have lain east of the village. Perhaps the stream was crossed occasionally for hunting expeditions (fig. 4).

Because we do not know which part of the tell

Fig. 2. The tell of Gomolava and the part excavated till 1977.
was inhabited at any particular time, nor, consequently, how large the human population was, it is difficult to estimate how large the fields must have been and how much grazing land was needed to keep the farmers and their herds alive during the different occupation phases. The fields in the Iron Age and later times might have been considerably more extensive than those of the Vinča period because of a better knowledge and use of animal traction, the knowledge ànd use of ploughs, and the knowledge and use of carts for transportation. However the inhabitants of each of the successive villages could only have exploited the four biotopes available near the village which were north and eastwards arable land; southwards a marshy area; westwards the river; and woods bordering the fields.

4. THE FAUNAL REMAINS

The well preserved animal remains were collected in such large quantities that it was impossible to study themall in the comparatively short excavation period
of one month a year. It was decided therefore to study part of the material from the Vinča levels of block I, II and VI excavated in 1973, and part of the material from the La Tène levels from blocks III, IV and V also excavated in 1973 (fig. 2). The Vinča layers are thicker and less disturbed than those of the overlying cultures and the possibility that they are contaminated with younger material is considerable less than for the material of the higher levels to be contaminated with older and younger material. Therefore and also because it is most probably the oldest habitation phase of the site, the bones from the Vinča levels were chosen for examination. Although more disturbed, the La Tène layers were also fairly well developed and the bones collected from these layers well preserved. The faunal remains from these layers were chosen to establish whether the ratios in which the species were found differed from those of the earliest settlement, and whether traces of change were discernible within a species, since the first farmers settled on Gomolava. The final publication of the faunal remains cannot be expected in the near future, the more so because the excavations are not yet finished.

Ca. 43% of the bones of the Vinča period were preliminarily sorted out and described, and ca. 34%

from the La Tène period. This means that ca. 10.75% of the Vinča bones that could have been collected in $1 / 3$ of the original mound were studied, and 8.5% of the La Tène bones. These are very rough estimates but give some idea of the richness of the material.

In 1973 and the previous years no samples were sieved to try to obtain the remains of small mammals, birds, reptiles, amphibians and fishes, but during flotation of earth samples to obtain charred grains and seeds by the palaeobotanists, conspicuously few bones of the above mentioned categories were found and no large fragments. This gave the impression that during the excavation most bones were retrieved by the workmen. This impression was corroborated in I 974, I 975 and 1976 when a number of earth samples each of ca. 40 litres (the contents of a wheelbarrow) were sieved systematically on three sieves with meshes of to mm, i. 5 mm , and 0.5 mm (fig. 6). Surprisingly it was found that only a few

Fig. 3. Gomolava and other Vinča sites along the Sava. 1. Sa abac, 2. Ǩlenab ,,Adzine Njive", 3. Starčevo Brdo, 4. Gomolava, 5. Jarak „Aluge", 6. Sremska Mitrovica „Ribnjak", 7. Sremska Mitrovica "Kalvarija".
bones of animals of the above mentioned category were left on the sieves, and that although the number of identified species became larger, the ideas about the basis of subsistence of the prehistoric villages did not change.

s. THE SPECIES

The faunal remains from both periods were well preserved, but most of the bones were broken, of ten hacked into small pieces or partly devoured by dogs. Owing to this, a number of bones have not yet been

Fig. 4. Gomolava and its surroundings as it could have been in the Vinča period.
i. wood, 2. 5 km-range, 3. fields, 4. marshes, 5 . the tell, 6. fences, 7. river, 8. present day motor road from Novi Sad to Sabac.
identified, but could only be put together in groups (table 2, 3, 4). They are mainly the vertebrae, ribs and the shafts of long bones of i. cattle/red deer/wild boar/horse, and 2. sheep/goat, pig/roe deer. The measurements in mm are given in table 6 .
S.I. Mammals - Mammalia

Hare - Ie pus capensis Linnaeus, 1758

Six long bones of the hare were found in the V inča layers, four in those of the La Tène period. No parts of the skull or mandibula were collected.

Beaver - Castor filber Linnaeus, 1758
Of the beaver only a pelvis fragment was found in a Vinča context.

The farmers of Gomolava

Wolf - Canis lupus Linnaeus, 1758

Of the wolf one mandibula and one metatarsus have been found in the Vinča period. The length of M_{1} and the molar row fall into the range of those of the wolf remains of Vlasac (Bökönyi 1975).

Domestic dog - Canis familiaris Linnaeus

Dog remains were found both in the Vinča and the La Tène layers. In the first period 7 skull fragments, 5 upper-jaws and 21 lower-jaws were collected as well as the long bones of the fore- and hind-extremities. In the La Tène layers the skull fragments were relatively less numerous. The length of M_{1} and the molar and premolar toothrow are the same in both periods (table 6) and also correspond with the measurements of the earlier Vlasac dogs. In both cases the broken skulls and long bones indicate that the dog was on the menu.

Fox - Vulpes vulpes Linnaeus, 1758

Like those of the wolf, fox bones are few in number. Two maxillae and four long bones belong to the Vinča layer, one mandibula to the La Tène period. The foxes seem to have been slender animals.

Badger - Meles meles Linnaeus, 1758

A fragment of a mandibula and the ulna of a badger were found in the Vinča period.

Horse - Equus caballus Linnaeus

Horse bones were found in the layers of both periods. From the Vinča layers only a scapula, a pelvis, a femur and a second phallanx could be identified with certainty. The number of horse bones from the La Tène layers is higher. Fragments from the skull, lower-jaw as well as the extremities were collected. All the bones seem to be from mature animals. Some of the bones were broken like those of other food animals. Remains of horses are often found in small numbers in European settlements previous to the Bronze Age. Probably the horse was first domesticated ca. 3000 B.C. in southern Russia (Nobis 1971). It would therefore seem that the remains of the Vinča period can only be of wild animals. For which purpose they

Fig. 5. A layer of shells of edible snails in the filling of a Vinča pit (Block I, 59 89/XIII, XIV).
were used in the La Tène period, is difficult to say, but they could have been mounted, used as foodanimals or used to draw light carts.

Wild boar - Sus scrofa Linnaeus, 1758
Remains of the wild boar are well represented in the Vinča layers, in contrast to the La Tène period of which only two wild boar bones were retrieved. The number of bones in the Vinča layers may actually be higher since it was impossible to measure all the bones, and especially among the lower- and upper jaws of animals not yet 2 years old, which have been allotted to the domestic mammals, there may be a number which belong to the wild boar. Further research is necessary to elucidate this point. The same holds for the long bones of immature animals of which the sutures were not yet fused. In the La Tène layers it was not difficult to separate the wild boar bones from those of the domestic pig.

Domestic pig - Sus domesticus
Both in the Vinča and the La Tène period the domestic pig must have been the most frequently eaten animal. For a number of fragments it was impossible to decide whether they belonged to wild or to domestic animals. In most cases the bones were broken; the skulls in small fragments, the long bones in two or more parts. Of the mandibulae the pars incisiva and the ramus mandibularis were severed from the pars molaris. It seems that during both the Vinča and in the La Tène period more than half the pigs were slaughtered before they were two years old (Ellenberger and Baum 1943). In the Vinča layers more

Fig. 6. First trial with water sieving in 1975.
mandibulae of females than of males were found, while in the La Tène twenty of canines of the lower jaw were collected to 6 of 8 q. Because only a small proportion of the material was identified, it is too early to make definite conclusions about the ratio in which the former inhabitants of Gomolava killed male and female pigs. In both periods the estimated minimum number of pigs outnumber the small ruminants and the cattle. The early slaughter age indicates that the main purpose for which pigs were kept was food production (table s). At least 2 s animals were killed at an age of ca. $1 / 2$ year, which indicates an autumn slaughter period. Even at present, the villagers of Hrtkovci keep one or more pigs to be killed in the autumn. The pigs could have been kept near the houses at night, to be grazed during the day in the woods or the abandoned fields. Some pigs are still grazed in this way in Y'ugoslavia.

Red deer - Cerrus elaphus Linnaeus, 1758
In both periods the red deer is the wild species whose remains are most frequently found. But deer must have been important as food only in the Vinča period. Mature animals were caught in that period as well as young immature deer (table s).

Fragments of every part of the skeleton are found and there is no reason to doubt that the animals were brought to the settlement to be butchered. The metapodia (metacarpus and - tarsus) especially were used for the fabrications of bone tools and objects, as were the antlers. 6s Antler fragments were collected in the Vinča layers of which 2 were still attached to the skull. According to the numberof mandibulae at least 24 animals were caught (table 5), of the mandibula the pars incisima and the ramms mandibularis were severed from the pars molaris (fig. 7). (of the pelvis fragments 4 belonged to 98 and s to ôo ${ }^{\hat{\prime}}$ (Jéquier 1963). During the La Tène period the red deer was less important as a food animal. In this period the animals that wereoccasionally caught werealso brought to the settlement. The few measurements that could be taken of these bones do not indicate a change in stature of the animals (table 6). The animals were most probably hunted in the extensive woods, that even in the La Tène period still surrounded the settlement.

Roe deer - Capreolıs capreolıs Linnaéus, 1758
The roe deer too, seems to have been hunted in both periods. In the Vinča period it is, according to the

The farmers of Gomolava

Fig. 7. Mandibula fragments of Cervus elaphus (red deer) showing the way in which the lower-yaw was cut in the Vinča period.
number of bones, the third in importance among the wild mammals, according to the estimated minimum number of the individuals the second, after the wild boar. The roe deer also seems to have been brought to the tell. It was not possible to identify any tibia to species, but in the group of 52 pieces ascribed to Capra/Ovis/Capreolus/Sus at least some of the fragments can be expected to belong to the roe deer.

Aurochs - Bos primigenius Bojanus, 1827
Remains of this species were only found in the Vinča layers. The number given is probably too low. In the first place some of the mandibulae of the immature cattle, that were not yet measured, could belong to the aurochs. Secondly there might be aurochs bones among the large number of fragments not yet identified to species and put together in the group of long bones of Bos/Cervus/Sus/Equus. From other sites in northern Europe it is known that the measure-
ments of cattle and aurochs bones partly overlap (Degerbol i970). It will be even more difficult to separate those unmeasurable fragments than it is to separate measurable bones. However, it seems that the aurochs, although hunted, was not the most important part of the bag.

Domestic ox - Bos tanms Linnaeus

If we consider the number of bones the domestic ox seems to have been the most frequently slaughtered domestic animal in the Vinča period, while in the La Tène period its importance seems to have diminished. Cattle remains occur in the La Tène period in similar numbers to those of the small ruminants and pigs. In both periods mature and immature animals were slaughtered. ()f the mandibulae of the Vinča layers is had not yet the full set of back teeth, while is had. In the La Tène period these numbers were 8 and 10. This indicates that in both periods half of the slaughtered animals may have been mature, half immature (table s).

The skeletal parts that were measured show a remarkable decrease in size in the cattle of the later period. It is always difficult to decide which bones still belong to domestic ox, which to the aurochs. If the measurements of a skeletal part increase gradually without large gaps, they are all reckoned to belong to the domestic ox and, only in the case that there is a real gap in the measurements are the larger specimens described as aurochs.

This problem only arises for the Vinča period, while in the La Tène times the aurochs seems not to have been hunted any more, in any case less frequently. When in future more material is investigated, the remains of aurochs and domestic cattle may be separated more definitely. If the metacarpus or metatarsus are not broken, the height at the withers of the animal can be calculated by multiplying the maximum length with a certain factor. In this case the factors worked out by Haak (1969) were used. Since it was uncertain whether the bones belonged to males, females or castrates, the measurements were multiplied with the factor for sex unknown. The heights thus obtained were for the Vinča period 102 and 125 cm and for the La Tène ior, 102, 103 , 106,107 and 109 cm for the metacarpus. The metatarsi of the La Tène period gave withers height of 92, ios, IO9, 114 and II 6.5 cm .

The long bones were used for the manufacture of bone tools. Probably cattle were not only used for consumption, but were also milked, and probably used for traction. That the domestic ox was considered to be a nimportant animal in the Vinča period is indicated by the finds of carefully modelled clay cattle heads with real horn-cores attached in other Vinča sites. The careful disposition of part of a cattle skull at the bottom of a pit also points in this direction. This skull was of a mature female that waskilled by a heavy blow on the head that splintered the frontal bone.

```
Goat - Capra lircus Linnaeus, 1758
Sheep - Oris aries Linnaeus
```

Of both sheep and goat, horn-cores have been found in both periods. The horn-cores of the goat are medium-sized and slender. The horn-cores of the sheep are small (table 6).

Although most of the other skeletal parts of these species are difficult to separate it seems that the majority of the bones in both samples belonged to sheep (Boessneck, Miuller, Teichert i964).

Both immature and mature animals were slaughtered. From the Vinča layers io mandibulae were of animals not yet two years old, 9 were of animals two years old or older. In the la Tène period those numbers were s and 33 (table 5). This gives the impression that more animals reached maturity before they were killed, in this later period. This may be the result of a change in the exploitation of sheep by the I.a Tène inhabitants of Gomolava. There are no indications that in the Vinča period wool was used for spinning and weaving. The animals were at that period probably kept primarily for food and probably to a certain extent for milking. In the La Tène period wool was certainly used for spinning and weaving. The larger number of mandibulae of mature animals may be an indication of keeping mature sheep for wool production. The long bones of sheep and goat, especially the metapodiae, were used in the bone industry. In the Vinča period almost all metapodiae were used for the fabrication of a wide variety of pins.

s.2. Birds - Avis

Amazingly few remains of birds were found, which
in turn represent only a few species. As stated above this is not due to a deficiency in collecting methods. In that case at least the bones of large birds would have been found, but the remains of large birds are also scarce.

Domestic fowl - Gallıs gal/ns domesticus

A domestic species that is not found in the Vinča period is the domestic fowl. This bird was originally domesticated in the Far East; India and Indochina, and came from there to Europe. As early as the second millennium B.C.. it had reached the Near East and Egypt, Greece only being reached in the first half of the first millennium B.C., as is shown by the manifold pictures of cocks and hens on Grecian pottery from that period. In the sixth century B.C. there existed a lively trade between southern and central Europe, which brought the domestic fowl to central Europe where its remains are found in the garbage of the Heuneburg, a fortified Hallstatt site (Kimmig 1968). The occurrence of the domestic fowl in the La Tène lavers of Gomolava fits into this context. Ten bones were collected of at least 3 animals. ()ne is the tarsometatarsus of a cock with a formidable spur. The other two, also tarsometatarsi, are very fragmentary, but they are small and may belong to hens. The domestic fowl could have been eaten, the eggs could have been used and the cocks might have been used for cock-fighting. Greek pottery often depicted cock-fights.

Grev-lag-goose - Anser anser (Linnaeus)
 Domestic Goose - Aluser allser cf. domesticus

The only other species that could be identified is the goose. In the Vinča layers two bones were found that to all probability are from the goose, in the La Tène laver two bones that are certainly from a goose. In the La Tène period we must take into account the possibility that the goose was domesticated. $\Delta \mathrm{t}$ present no osteological differences are known between the wild gray goose, which is the parent species of the domestic goose, and the domestic goose. The fact that the inhabitants of the La Tène Gomolara did keep domestic fowl also makes it possible that they kept other domestic birds, ducks and goose or at least the practice of keeping those domestic birds was known. To this day flocks of herded white
geese are still a common sight in Yugoslavia.
5.3. Fish - Pisces

Fish remains too are scarce. This is also a case where the few remains cannot be explained by assuming that they were overlooked and not collected by the workers. The vertebrae of large catfish are very conspicuous when present, and are not easily overlooked. It seemed also that the old inhabitants of Gomolava did not fish frecpuently.

Catfish - Silurlus glanis Linnaeus, 1758
The bones of the large catfish, which can reach a length of 4 m , that are found in large numbers in other prehistoric settlements along the rivers in Y'ugoslavia being conspicuously absent. Only one piece of this species was found in the Vinča perind.

Carp - Cyprimls colpio Linnaeus, 1758
()f the carp six operculae and an os pharyngum were found in the La Tène layers.

Pike - Eso.v /ucius Linnaeus, 1758
()f the pike a preaoperculum was collected from the La Tène lavers.

Small cyprinide - cf. Idus
()f a cyprinide smaller than the carp, that was possibly an ide, one interorbiculare was collected from the La Tène layers.

5.4 Reptiles - Reptilia

In the Vinča layers five remains of not pet identified tortoise have been found.

Crustaceans - Cirlstacear
In the Vinča layers one part of a pair of pincers of a crawfish was also found. The pincer is too large for a freshwater crab, and it does not seem very likely that crab was imported from the coast. Therefore the pincer most probably came from a crawfish, two species of which are at present known in Y'ugoslavia.
5.5. Molluscs - Mollusca

The shells of two species of molluscs were collected from the layers of both periods. Both may have been important sources of food, but this is difficult to estimate since the shells were not always systematically collected.

Edible snail - Helix sp
The snail-shells of this species were found in large numbers in the Vinča layers especially. Even today these animals are very common near Gomolava and could have been easily collected (fig. s).

Unio - U'mio indet

The unio was also collected, and probably used as food. At present these animals still live in the Sava near Gomolava. In 1973 it was observed that pigs knew where to find the unio's in the shallow waters of the Bossuth, a tributary of the Sava. The animals crushed the shells with their teeth before devouring them. The shells in Gomolava are often broken, but not to such an extent that they could have been pigfood.

6. DISCUSSION

6.I. The Vinča period

During the excavation campaign of 1973 , it was discovered that the earliest inhabitants of Gomolava did not live in uncomfortable, dark and damp dwell-ing-pits as was formerly thought, but in well-constructed houses.

These large houses indicate that the Vinča farmers must have had an economy' which enabled them to be sedentary. The base of this economy must have been agriculture, i.e. stock-breeding and plant-cultivation.

The huge wooden posts that had to carry the roof of a house were placed in elongated rectangular, 2 m deep foundation treches, which indicates that the houses could have been at least 4 m high. The width was ca. 7 m and the length more than 20 m . The walls were probablya wattle and daub construction coated with loam, also the floors may have been of loam, just
as the floors of the present-day traditionally built houses in the area still are. The loam was quarried from pits in the direct vicinity of the houses. These pits were subsequently used by the farmers to dispose of their garbage. Most of the faunal remains that were collected come from those pits, and only a small proportion was found in the houses. Most of the bones are broken and show carving marks. In many instances the vulnerable proximal epiphyses of the humerus, femur and tibia of the larger hoofed mammals had been completely gnawed away by dogs or other canids. The identified remains belong to 16 mammal, and at least 2 bird, i fish, i reptile, i crustacean and 2 mollusc species (table 2, 3). Among the slaughtered animals cattle bones are the most numerous, followed by domestic pig, sheep and goat. Dogs seem to have been on the menu too, but not in large numbers. The skull of a cow found at the bottom of pit shows that the animal was killed by a blow on the forehead. The careful disposition of the skull at the bottom of the pit may be an indication of cattle veneration. Traces of cattle veneration are also found in other Vinča settlements.

The tooth eruption and tooth wear of the maxillae and mandibulae of cattle, sheep/goat and pig indicate that animals of different ages were slaughtered. With one exception the mandibulae of the dog were of mature animals.

It is unrealistic to think that the percentages in which the remains of the species are found, are a reflection of the composition of the herds. A careful analysis, however, may give us an indication of the number of animals that were slaughtered in one year, which in turn may be an indication of the minimum number of animals that were kept.

Although only part of the material has been studied, we can make some guesses. In blocks IV and V, excavated in I 973, the foundation trenches of at least five farms were found, representing two building phases, the first with two houses, the second with three. No traces of houses have been found in block I. In i976 another row of houses were found in blocks III and VI. Roughly half of the tell has disappeared into the Sava, so there may have been one or more rows of houses on that part of the tell. If we assume that the excavated part is $1 / 6$ the of the original tell, that the life-span of a house was approximately 60 years and that the identified bones of the Vinča layers are really ca. 10% of the number that could have
been found in ${ }^{1} / 3^{\text {rd }}$ of the original mound, we can make some rough calculations, or rather estimations, about the number of domestic animals that were slaughtered annually and the number of wild boar, red deer and aurochses that were caught in the same period. The minimum number of individuals was estimated solely by the number of lower-jaw fragments of which it was possible to establish the age by tooth eruption or tooth wear. None of the toothless fragments were considered (table s). We get the following numbers: cattle, 45 animals younger than 3 years, 540 animals of 3 years or older; sheep/goat, 270 animals younger than 2 years, 300 animals of 2 years or older; pig, 2070 animals younger than 2 years, 720 animals of 2 years or older; wild boar, 1020 animals of 3 years or older; red deer, 140 animals younger than 2 years, 420 animals of 2 years or older; roe deer, 140 animals younger than 2 years and 720 of 2 years or older. If we put the life-span of a house at 60 years (I have no information on the lifetime of houses in this part of Europe available), then the total duration of the two habitation phases might have been 120 years. This means that the above-mentioned numbers of animals were slaughtered and killed in i 20 years, which implies that the number of animals slaughtered or hunted annually was apparently not very high. All this is very hypothetical for we don't know the exact duration of the Vinča period, nor the number of houses. We also do not know the number of inhabitants that consumed the animals. The only thing that those calculations result in is an indication that the herds of the domestic mammals were not necessarily large and that the pressure of the human population on the wild life of the surrounding woods cannot have been very severe.

A nother uncertainty is that we don't know how far the actual number of bones discarded by Vinča man corresponds with the number of bones recovered. To my knowledge no observations have been made about the ratio of bones recovered and the bones discarded in present-day villages of primitive people, but there is a report by Guilday (i970) on the animal bones recovered from fort Ligonier in America that was used by the British army in the French and Indian war in the 18 th century A.D. Guilday found that there was a large discrepancy between the number of slaughtered animals estimated by the bones, and the numbers that were mention-
ed as having been slaughtered in reports written in the days of the occupation of the fort. Brain (n.d.) studied the goat remains collected in the Hottentot villages in the Central Namib desert in West Africa, but he did not mention to what extent the number of individuals they represent compares to the number of animals slaughtered. He did find that some parts of the skeletons were retrieved in larger numbers than others, e.g. the distal parts of the humerus more often than the proximal parts, atlas and epistropheus in larger numbers than the other vertebrae, etc. The bones Brain studied were first broken and gnawed at by human beings, then thrown away and scavenged by the dogs of the village. No other scavengers were present. In Gomolava we see the same in both Vinča and La Tène material. In Gomolava the dog was the main scavenger, although vultures, crows, raven, etc. could also have taken their share of the garbage. A number of bones show very clearly the way in which they were gnawed at by dogs.

Of the wild species red deer seems to have been the most frequently hunted or trapped, followed by wild boar, roe deer and aurochs. Hare, beaver, wolf, fox, badger and horse only in small numbers. There are at least six conceivable reasons for the farmers having concentrated the hunt, as elsewhere in Europe, on red deer, roe deer, wild boar and aurochs. There are: r) to obtain food, 2) to protect the crops, 3) to protect the food resources of the herds (the four species were foodcomptitors of the live-stock), 4) the farmers wanted to avoid interbreeding of cattle and pig with the wild parent species, s) the farmer wanted to catch young animals for taming (cattle, pig), and killed the mature animals as a consequence, 6) the animals were hunted as a pastime. The small numbers in which red deer, roe deer, and wild boar actually seem to have been caught, does not give any indication as to which of these possibilities was the most important motive for the killing, but probably it was a combination.

The Vinča farmer did not only hunt animals but also collected snails and mussels. The consumption of molluscs seems to have been not insignificant. Large numbers of unio-shells and shells of edible snails were found in the garbage pits. It was observed in at least one pit in block I, that the snail shells formed a conspicuous band in the pit filling (fig. s). Edible snails are active in summer, but hibernate during the winter in self-dug holes in the ground. In this period
they close their shells. The animals can be collected during the summer, but according to the „Larousse Gastronomique" they taste best in early autumn, just after the beginning of the hibernation. If the snails are collected during thesummer the thave to be kept alive for some time, to get rid of poisonous herbs, before they can be consumed. Careful sampling of the shells during the excavation may give an estimation of the duration of the use of the pit, and all the pits together may give an indication of the duration of one habitation phase of the settlement.

Only a few remains of birds and fish were found, although in 1973 a large quantity of earth from the garbagepits was sieved and flotated. Apparently fishing and fowling were not important in the Vinča period, although it is possible that fish was not brought into the village. A bone fish-hook and an antler harpoon that have been found, indicate that at least some fishing was practised by the villagers. Lastly, mention must be made of the fact that one part of a pair of pincers of a river crawfish and five fragments of an as ret unidentified tortoise have been found.

According to Higgs and Vita Finzi (1972), the area that was exploited effectively by farmers lies within one hour's walking distance or ca. 5 km from the site. Since in Gomolava the Sava formed a real barrier in the west, the arable fields have to be sought to the east, north and south of the village. Because the earth is fertile in this part of the world, the one hour's walking distance might have been applicable herc. In Map 4 an attempt has been made to give some idea of the situation in Vinča times. Most probably the arable fields were protected by fences against wild boar, red deer, pigs and other pests. Sheep and goat were grazed in abandoned fields, cattle and pigs in the woods. For hunting the farmers may have crossed the Sava occasionally, where they could have caught wild boar and red deer. The heavier aurochs and the red deer they probably caught in the woods to the East.

Gomolava was not a solitary settlement in the time of the Vinča period. South as well as northwards other settlement sites are known, although they have not been intensively investigated. The nearest are those of Starčevo Brdo ca. 4 km to the south, and the site of Aluge near Jarak ca. 4 km to the north. Both these sites lie well within the supposed range
during the same period, the hunting areas and even the agricultural areas of the three villages may have either overlapped, or have been within a short distance of each other (fig. 4), according the theories of Jarman and Higgs.

6.2. The La Tène period (VI)

The La Tène period in the Voivodine is the period of the Union of the Scordisc tribes. In Gomolava three habitation phases can be discerned. The foundation and first building phase of the settlement (Vla), of which traces were found in the central part of the northern plateau, had houses with a rectangular groundplan, 5 m long and $2,5 \mathrm{~m}$ wide. Its beginning has been dated at the end of the second century B.C. In the second phase (VIb), too, the houses were small with wattle and daub walls and clay floors. Conspicuous in this period are a large number of pottery ovens. Gomolava is considered to have functioned in this period as a potter's centre. The last phase of the La Tène habitation falls in the beginning of the third century A.D. The settlement was R omanized and fortified with earth ramparts and ditches.

No attempt has as yet been made to divide the bones over the three habitation phases and they will be described here as one complex, ranging from the second century B.C. to the second century $\Lambda . D$. in which period the inhabitants lost their independance and were incorporated into the Roman Empire. It is even less satisfying to make calculations and guesses for this period about the number of animals slaughtered and hunted as for the Vinča period, since the number of uncertainties has increased. It seems certain that hunting was of less importance. The remains of aurochs are absent, and red cleer, roe deer and wild boar were only found in small numbers. Remains of horses were collected in a relatively higher percentage and it can be taken for certain that the animals were domesticated. Domestic cattle diminishes in importance in the daily diet and sheep and pig both gain in importance. There are no traces of import of a better quality of cattle as was found in nearby Sirmium (Sremska Mitrovica). New are the domestic fowl and probably the domestic goose. As in the Vinča period fishing and fowling were apparently of small importance as far as we can gather from the evidence of the bones. The La Tène inhabitants fished carp and pike, and they collected the edible
snail and unio mussels as their predecessors did.
Whether all the farmers lived in the settlement or whether the settlement already had the function of a small town, with a farming population living at some distance outside its ramparts is at present unknown. It is therefore also impossible to say anything of the actual number of animals kept and herded and the pressure of the human population on the wild resources of this period.*

* The text was corrected by Mrs. van der Meulen. The drawings were executed by Mr. J. M. Smit.

7. LITERATURE

BOESSNECK, J., H. H. MËLLER \& M. TEICHERT, I gG4. ()steologische Unterscheidungsmerkmale zwischen Schaf (Oris aries: Linné) und Ziege (Capra hirrans Linné). Kithu-A Archir 78, pp. 5-129.
вӧккӧкүч, s., 1975. V'lasac. an early site of dog domestication. In: A. T. Clason (ed.), Archoreozoological Studies. Elsevier/ Amsterdam, pp. 167-178.
brain, c. k., n.d. Hottentot food remains and their bearing on the interpretation of fossillevec assemblages. Scientificic papers Nalbil) Desert Res. Stm. 32, Pp. 1-11.
bre'iner, b., 1973. Die Stratigraphie von Gomolava. Ein Vorschlag zur Bestimmung der relativen Chronologic an dem Übergang vom Endneolithikum zum Äneolithikum im Südostspannonien. Actes dur I'Ille Congres Infervational des:
 $32+$.
brtikner, b, b. jovanović \& n. tacié, 1974. Praistorïáa I'ojrodine. Novi Sad.
 Bojanus) and Neolifllicic domesitic cattle (Bos taurius domesticus: Linné) in Demmar'E. Zoological and Palynological investigations. Liobenhavn.
malenberger, ㄸ. \& h. baden, 1943. Fandluch der rergleichende Anatomie der Hansitiere. 18 th ed. Berlin.
GOClldA), J. F., 1970. Animal remains from archaeological excavations at Fort Ligonier. Ammuals of Ciarnegie $M_{n s i e l l u m}+^{2}$, pp. 177-186.
 Dentsichen Merimalandschafen med Heidschmurkern. Diss. Nünchen.
miggs, f. s. \& C. MtA-Fin\%1, 1972. Prehistoric economies: Λ territorialapproach. In: E. S. Higgs, ed., Papers in E:comomic Prehistori', (Cambridge, University Press), PP. 27-36.
jégulier, f.-p., 1963 . Rothirsch, Cetrlas elaphusis Linné, 1758 . In: J. Boessneck, J.-P. Jéquier \& H. R. Stampfli, Sectherg lomr-gä̈schisepe-Siid, T'eil ;, Die Tierereste, Pp. 72-102.
fov Anovici, b., 197 I The settlement of the Scordisci on Gomo-lava-Excavation from 1967-1971 (summary). R.A.D. 20, pp. 1+3-146.

rat̀s: R., 1954. Gomolava hei Hrtkovci (summary). R.A.D., pp. 218-219.

> A. T. CI.ASON

TABLE 2
Vinča period．The distribution of the bones．

	$\begin{aligned} & n \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	n 0 0 0 0 0	$\begin{aligned} & \mathscr{0} \\ & \text { © } \\ & \text { © } \\ & \text { n } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { E } \\ & 0 \\ & 0 \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { む̀ } \\ & \text { ט̀ } \\ & \text { o} \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & n \\ & 0 \\ & 0 \\ & \\ & \\ & \\ & 0 \end{aligned}$	$$	$\begin{aligned} & \mathscr{\infty} \\ & \stackrel{0}{0} \\ & E \\ & \mathscr{\infty} \\ & \stackrel{\omega}{む} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{0} \\ & \text {.0 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	$\begin{aligned} & \dot{0} \\ & \text { in } \\ & \text { n } \\ & \text { n } \end{aligned}$
Antler	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Horn－cores	8	－	2	3（1）	－	－	－	－	－	－	－	－	－	－	－
Cranium	21	3	－	－	19	7（1）	－	－	－	－	－	－	－	－	60（2）
Maxilla	19	3	－	－	36	5	－	－	－	－	2	－	－	18	－
Dentes	70	8	－	－	－	－	－	－	－	－	－	－	－	15	7
Mandibula 1	119	41	－	－	127	21	－	－	－	1	（1）	－	（3）	48	－
Dentes	52	5	－	－	－	1	－	－	－	－	－	－	－	9	36
Dentes	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
O．hyoides	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Atlas	－	3	－	－	2	－	－	－	－	－	－	－	－	6	－
Epistropheus	－	5	－	－	－	－	－	－	－	－	－	－	－	1	－
Vertebrae	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Costae	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Scapula	55（32）	2（1）	－	－	41（3）	1	1	－	－	－	1	－	1	16	－
Humerus	83	19	－	－	38	5	－	－	－	－	1	－	－	21	2
Radius	40	27	－	－	24	4	－	－	－	－	1	－	（1）	26	－
Ulina	32	3	－	－	25	5	2	－	－	－	－	1	－	20	－
O．carpi	15	－	－	．－	－	－	－	－	－	－	－	－	－	－	－
Metacarpus	76	9	－	－	－	4	－	－	－	－	－	－	－	－	－
Pelvis	43（78）	14	－	－	12	4	1	－	－	－	1	－	1	16	－
Femur	91	7	－	－	32	3	－	1	－	－	－	－	1（1）	12（2）	－
Patella	2	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Tibia	60	31	－	－	42	1（1）	2（1）	－	－	－	－	－	－	23	－
Tibio－tarsus	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Fibula	－	－	－	－	－	－	－	－	－	－	－	－	－	4（9）	－
O．tarsi	－	－	－	－	－	－	－	－	－	－	－	－	－	1	－
O．centrotarsale	10	－	－	－	－	－	－	－		－	－	－	－	－	－
Calcaneus	33	11	－	－	5	－	－	－		－	－	－	－	14	－
Astragalus	15	－	－	－	－	－	－	－	E	－	－	－	－	9	－
Metatarsus	42	16	－	－	－	－	－	－	遃	1	－	－	－	－	－
Tarso－metatarsus	－	－	－	－	－	－	－	－	\sim	－	－	－	－	－	－
Metacarpus／metatarsus	s 4	－	－	－	31	－	－	－	－	－	－	－	－	－	22
Phalanx I	48	1	－	－	1	－	－	－	－	－	－	－	－	7	2
Phalanx II	36	－	－	－	－	－	－	－	－	－	－	－	－	5	－
Phalanx III	10	－	－	－	－	－	－	－	－	－	－	－	－	－	－
	9842	208	2	3	435	41	6	1	2	2	6	1	3	271	68

[^0][^1]The farmers of Gomolava

TABLE 3
La Tène. The distribution of the bones.

	$\begin{aligned} & \infty \\ & \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0} \end{aligned}$	0 0 0 0 0 0 0	$\begin{aligned} & y \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		0 0 0 0 0 0 0 0 0	Equus caballus	6 0 0 0 0 0 0 0 0	$\begin{aligned} & \curvearrowleft \\ & \frac{0}{3} \\ & 3 \\ & \vdots \\ & 0 \\ & \frac{0}{3} \end{aligned}$		$\begin{aligned} & \dot{0} \\ & \dot{N} \\ & \vdots \\ & \vdots \end{aligned}$
Antler	-	-	-	-	-	-	-	-	-	-	-
Horn-cores	10	-	4	6	-	-	-	-	-	-	-
Cranium	52(3)	8(2)	2	-	39	1	1	-	-	-	-
Maxilla	9	12	-	-	29	-	-	-	-	1	-
Dentes	53	23	-	-	7	-	3	-	-	-	-
					,						
Mandibula	68(3)	111	-	-	109	7	1	-	-	1	-
Dentes	27	20	-	-	43	-	4	-	-	-	-
Dentes	-	-	-	-	-	1	-	-	-	-	-
Atlas	1(1)	-	-	-	-	1	1	-	-	-	-
Epistropheus	1	-	-	-	-	1	-	-	-	-	-
Vertebrae	(204)	(79)	-	-	-	-	-	-	-	-	-
Costae	(256)	(277)	-	-	-	-	-	-	-	-	-
Sternum	-	-	-	-	-	-	-	-	-	-	-
O. coracoides	-	-	-	-	-	-	-	-	-	-	-
Scapula	59(1)	47(1)	-	-	39	2(2)	2	-	-	2	-
Humerus	49	44(1)	-	-	62(1)	4	4	-	-	-	2
Radius	30(2)	62	-	-	25(1)	4	3	-	-	1	1
Ulna	16	10	-	-	29	3	-	1	-	-	-
O. carpi	3	-	-	-	-	-	-	-	-	-	-
Metacarpus	30	32	-	-	19	-	2	-	-	-	-
Pelvis	45	17(1)	-	-	18(1)	2	1	1	-	-	-
Femur	42(1)	40	-	-	32	2	1	-	-	-	1
Patella	2	-	-	-	-	-	-	-	-	-	-
Tibia	30(1)	125	-	-	34(1)	6	2	2	-	2	-
Tibio-tarsus	-	-	-	-	-	-	-	-	-	-	-
Fibula	-	-	-	-	3	-	-	-	-	-	-
O. centrotarsale	5(1)	-	-	-	-	-	-	-	-	-	-
Calcaneus	17	2	-	-	8	1	-	-	-	-	-
Astragalus	12(1)	9	-	-	4	-	2	-	-	-	-
Metatarsus	51	52	-	-	19	1	2	-	-	-	2
Tarso-metatarsus	-	-	-	-	-	-	-	-	-	-	-
Metacarpus/metatarsus	(1)	28	-	-	-	2	1	-	-	-	-
Phalanx 1	38	3	-	-	4	1	2	-	-	-	-
Phalanx II	21	-	-	-	4	-	3	-	-	-	-
Phalanx III	6	-	-	-	-	-	-	-	-	-	-
	687	645	6	6	627	39	35	4	1	8	6

() identification uncertain

* shaft of humerus, radius, femur
** natural shed antler or antler fragment

The farmers of Gomolava

						$\begin{aligned} & \text { 을 } \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 . \\ & 0.0 \\ & 0 \end{aligned}$					io 0 5
-	$+9^{*}$	-	+2**	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	4	-	-	-	-	-	-	-	-	-	-
-	1	-	-	-	-	-	-	-	-	-	-
-	1	-	-	-	-	-	-	-	-	-	-
-	3	-		-	-	-	-	-	-	-	-
-	1	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	. -	-	-	-	-	-
-	1	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	5	-	-	-	-	-	-	-	-	-
-	-	5	-	-	-	-	-	-	-	-	-
-	-	-	-	-	1	-	-	-	-	-	-
-	-	-	-	-	1	-	-	-	-	-	-
-	-	-	(1)	-	-	-	-	-	-	-	-
$51 *$	8	-	2	-	2	-	-	-	-	-	-
-	5	-	-	-	-	-	-	-	-	-	-
-	5	-	-	2	1	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	2	-	2	-	-	-	-	-	-	-	-
-	2	-	-	-	-	-	-	-	-	-	-
20	7 (2)	-	-	-	1	$-{ }_{-}^{+}$	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
14	14(2)	-	1	-	-	-	-	-	-	-	-
-	-	-	-	-	1	-0	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	2	-	-	-	-	- 星	$-\frac{0}{0}$	-	-	$-\underline{\underline{-0}}$	-
-	4	-	2	-	-	- ${ }_{\text {¢ }}$	-	-	-	- $\frac{\text { ¢ }}{6}$	-
-	3	-	-	-	-	-	-	-	-	$-\frac{\text { en }}{\underline{\overline{0}}}$	$-\frac{\square}{\bar{c}}$
-	2	-	1	-	-	- ${ }_{\text {o }}^{0}$	-	$-{ }_{\text {- }}^{\text {ex }}$	${ }^{-}$	-	$\stackrel{-\infty}{-\infty}$
-	-	-	-	-	3	-00	$-\underline{ }$	- ${ }^{\frac{2}{2}}$	$-{ }^{-}$	$-{ }^{-}$	-¢
-	-	-	-	-	-	-	-	-	-	-	-
-	1	-	-	-	-	-	-	-	-	-	-
-	3	-	-	-	-	-	-	-	-	-	-
-	3	-	-	-	-	-	-	-	-	-	-
85	62+9	10	$8+2$	2	10	7	1	1	1	6	37

TABLE 4

The animal species found in the layers of the Vinča and La Tène periods collected during the excavations of 1973.

			Number of bones	
			Vinča	La Tène
Mammals	-	Mammalia	-	-
A				
Domestic ox	-	Bos taurus	984	687
Sheep/Goat		Ovis/Capra	208	645
Sheep		Ovis aries	2	6
Goat		Capra hircus	3	6
Domestic pig	-	Sus domesticus	435	588
Domestic horse		Equus caballus	1	35
Dog	-	Canis familiaris	41	35
B				
Hare	-	Lepus capensis	6	4
Beaver	-	Castor fiber	1	-
Small rodent			2	-
Wolf		Canis lupus	2	-
Fox		Vulpes vulpes	6	1
Badger	-	Meles meles	2	-
C				
Wild horse		Equus caballus	3	-
Wild boar	-	Sus scrofa	271	8
Wild boar/Domestic pig	-	Sus sp.	68	45
Red deer		Cervus elaphus	467	62
Roe deer		Capreolus capreolus	128	12
Aurochs		Bos primigenius	35	-
Aurochs/Domestic ox		Bos sp.	-	-
Domestic pig/Wild boar/Red deer			17	-
Domestic ox/Red deer/Wild boar/Horse (vertebrae, ribs, shafts long bones)			42691)	704
Sheep/Goat/Domestic pig/Roe deer (vertebrae, ribs, shafts long bones)			74	85
Blads	-	Aves	-	-
D				
Domestic goose	-	Anser anser cf dom.	-	2
Domestic fowl	-	Gallus gallus dom.	-	10
E				
Goose	-	cf Anser anser	1	-
Indet.		Aves indet.	7	-
Reptiles	-	Reptilia	-	-
F				
Tortoise indet.	-	?	5	-
Fish	-	Pisces	-	-
G				
Sheat-fish	-	Silurus glanis	1	-
Carp	-	Cyprinus carpio cf Idus	-	7 1
Pike	-	Esox lucius	-	1
Indet.		Piscis indet.	5	1
Crustaceans		Crustaceae	-	-
H				
Crawfish indet.	-	?	1	-
Molluscs	-	Mollusca	-	-
Unio indet.	-	Unio sp.	-	37
Edible snail		Helix pomatia	-	6

TABLE 5
The stage of tooth eruption in the maxillae (Mx) and mandibulae (Mn) of domestic cattle, small ruminants (sheep/goat), domestic pig, wild boar, roe deer and red deer, and the estimated minimum of individuals of those species.

TABLE 6				The measurements in mm. () measurement is not certain V - Vinća
Canis familiaris				
	V42	V42	V7	L - La Tène
Maxilla				Vo - La Tène polluted
Length of the tooth row	57.5	-	-	
Length of the molar row	18.0	-	-	
Length of the premolar row	43.0	44.5	-	
Length P4	-	18.5	18.0	
Width P4	-	9.5	10.5	

	V44	V4	V42	V14	V12	V16	V80	V22	V3	V1
Mandlbula										
1. Length: angle of the mandibula - outer rim of alv. I_{1}	(107.5)	109.5	(117.5)	123.0	124.5	-	-	-	(113.0)	-
2. Height vertical ramus: angle of the mandibula - coronoid proces	s	43.5	-	-	48.0	42.0	-	47.0	-	-
3. Length of the condylus	18.0	18.5	18.0	18.0	20.5	-	19.5	-	-	-
4. Length of the tooth row	61.5	61.0	67.5	69.0	68.0	59.5	64.5	65.0	62.5	70.0
5. Length of the molar row	31.0	31.0	33.0	31.0	32.0	31.0	35.0	32.5	33.0	32.5
6. Length of the premolar row	32.5	33.0	35.0	38.0	37.5	32.0	34.5	35.5	33.0	38.5
7. Length M_{1}	-	-	20.0	20.0	20.0	-	-	-	19.5	-

V52	V44	V66	V37	V49	V7	V66	V13	L171	L203	L140	L205	L164	L146
1. -	-	-	-	-	-	-	-	138.5	-	-	-	-	-
2. -	-	-	-	-	41.5	46.0	50.5	57.0	-	-	-	-	-
3. -	-	-	-	-	-	19.0	22.5	25.0	16.0	21.5	-	-	-
4. -	-	-	-	-	-	-	-	72.0	59.0	-	66.0	77.0	-
5. 30.5	34.5	-	-	-	-	-	-	(37.5)	30.0	-	32.0	39.0	-
6. -	-	32.0	36.0	37.5	-	-	-	(37.0)	31.0	-	37.0	41.0	-
7. 18.0	20.0	-	-	-	-	-	-	-	-	-	-	22.0	-

	L176	L203		L?	
Scapula			Ulna		
Minimum width of the neck	23.0	22.0	Width of the articular surface	13.5	
Length of the articular surface	26.5	23.0			
Width of the articular surface	18.5	17.0			
Width of the proc. articularis	28.0	29.0		L243	V0216
			Pelvis		
			Length of the acetabulum	22.5	22.5
	V0216				
Humerus					
Maximum distal width	21.0			L169	L196
Minimum width of the diaphysis	8.0		TIbia		
			Maximum distal width	22.0	21.0
	L139	L83			
Radius				L189	
Maximum length	172.0	-	Calcaneum		
Maximum proximal width	19.0	19.0	Maximum length	39.0	
Maximum distal width	26.5	-			
Minimum width of the diaphysis	14.0	-			
				L175	
			Metatarsus III		
			Maximum length	70.0	

Lupus lupus

V?

Mandibula

Height vertical ramus: angle of the	
mandibula -coronoid proces	67.5
Length of the condylus	29.0
Length of the molar row	45.5
Length M	28.0

Vulpes vulpes

Maxilla	r.	I.
Length of the tooth row	54.0	53.0
Length of the molar row	14.0	14.5
Length of the premolar row	41.0	40.0
Length P4	13.0	-
Width P4	7.0	-
Length M ${ }^{4}$	9.5	9.5
Length M ${ }^{2}$	6.0	5.0

Mandibula

Length of the condylus	16.5	-
Length of the tooth row	55.0	60.5
Length of the molar row	20.5	32.0
Length of the premolar row	28.5	29.5

Equus caballus

	L205
Scapula	
Minimum width of the neck	61.0
Length of the articular surface	51.0
Width of the articular surface	43.5
Width proc. articularis	79.5

	L219
Humerus	
Maximum distal width	80.5
Width of the trochlea	70.5
Minimum width of the diaphysis	33.0

	L171	L205
Metacarpus		
Maximum length	191.5	-
Maximum prox. width	42.5	-
Maximum prox. thickness	28.5	-
Maximum dist. width	41.0	44.0
Maximum dist. thickness	22.0	18.5
Minimum width of the diaphysis	27.0	-

-

	V44	L206
Pelvis		
Length of the acetabulum	60.5	56.5

Phallanx

Maximum length	-	(76.5)
Maximum proximal width	-	48.0
Maximum distal width	43.0	-
Minimum width of the diaphysis	30.5	30.5

Phallanx II

V85	L174	79	73

| 51.5 | - | - | (48.5) |
| :--- | :--- | :--- | :--- | :--- |
| 51.5 | 48.0 | (54.0) | - |
| 46.5 | - | 47.0 | 47.0 |
| 41.5 | 38.0 | 44.0 | 42.0 |

Metatarsus

L195
250.0
45.5

- 39.0

Sus scrofa - Sus domesticus

	V92	V ?	V ?	V56	V?	V8	V ?	V20	L200	L174	L219	L174	L 176	L203
Maxilla, juv.	Sd													
Length milk molar row	31.5	33.0	33.0	33.5	533.5	35.0	36.0	39.0	35.0	36.0	36.5	37.5	-	-
Length p^{3}	11.5	-	-	-	-	-	-	-	13.5	13.5	14.5	15.0	14.0	16.0
Width p^{3}	11.0	-	-	-	-	-	-	-	11.5	11.0	12.0	12.0	12.5	11.5
	V ?	V ?	V ?	V ?	V ?	V ?	V ?	V ?	V ?	V ?		L205	L212	L76
Maxilla, ad.	Ss	Ss	Ss	Ss	Ss		Ss	Sd	Sd			Sd	Sd	Sd
Length premolar row	-	-	-	-	-	-	-	43.0	-	-		-	-	-
Length molar row	79.0	79.0	83.0	-	-	-	-	-	-	-		61.5	-	63.0
Length M^{3}	34.5	34.0	41.0	32.5	57.0	42.5	43.0	-	25.5	28.0		24.5	33.0	35.0
Width M ${ }^{3}$	21.5	21.0	22.0	21.5	520.5	25.0	25.0	-	17.0	17.0		17.5	18.0	18.0
	V52													
	Sd		Sd		V7	V7		V ?		V ?		V7	V ?	
Mandibula $\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3}$ (M_{1} erupting)	I.		r.		Sd	Sd		Sd		Sd		Sd	Sd	
1. Length milk molar row	36.5		35.5		-	-		-		-		32.5	36.5	
2. Length p_{3}	17.5		18.0		18.5	18.0		23.5		18.0		17.5	19.0	
3. Width p_{3}	7.5		7.5		7.5	7.5		10.5		8.0		7.5	8.0	

V?	V?	V?	V?	V?	V5	L206	L189	L243	L233
Sd									
1. -	35.5	(35.0)	34.5	-	44.0	37.0	-	-	-
2. 22.5	17.5	18.0	19.0	17.5	21.5	20.0	19.5	19.5	20.0
3. 10.0	7.5	8.0	8.0	8.0	9.5	9.5	13.5	8.0	8.0

	$V 32$	$V 56$	$V ?$					
$p_{1} p_{2} p_{3} M_{1}\left(M_{2}\right.$ erupting $)$	$S d$							
1. Length milk molar row	-	-	37.0	-	42.0	-	37.0	35.5
2. Length p_{3}	21.5	17.5	18.5	20.0	-	17.5	17.0	18.0
3. Width p_{3}	10.0	8.5	8.5	10.0	-	9.0	9.5	8.0
4. Length M_{1}	19.0	16.0	16.0	18.5	-	16.0	16.5	16.0
5. Width M_{1}	13.5	10.5	10.5	12.5	-	10.0	10.0	10.0
6. Length M_{2}	-	-	-	-	-	-	-	-
7. Width M_{2}	-	-	-	-	-	-	-	-

V?	V?	V?	V?	V14	V?	$L 195$	$L 116$	$L 205$	$L 196$	$L 102$	$L 164$
Sd											
1. 35.5	34.5	-	-	36.5	41.0	-	35.0	38.5	-	36.0	34.0
2. 18.0	17.5	19.0	18.0	18.5	18.5	18.5	18.0	20.5	18.0	18.0	-
3. 9.0	7.5	-	8.0	8.5	10.0	9.0	8.5	9.5	9.0	8.0	-
4. 16.0	14.0	15.5	15.2	13.0	17.5	-	-	-	-	-	-
5. 8.0	9.5	10.0	10.0	10.0	12.5	16.0	12.0	17.0	16.5	16.5	14.0
6. -	-	-	-	-	-	10.0	10.5	11.5	11.0	10.0	9.5
7. -	-	-	-	-	-	-	-	-	-	-	-

	V ?	V48	V32	V?	V23	V?	V?	V?	V?	V91	V?	V?
$p_{1} p_{2} p_{3} M_{1} M_{2}\left(M_{3}\right.$ not erupted)												
1.	35.5	-	38.0	39.5	-	-	37.5	-	-	-	-	-
2.	17.5	-	18.5	17.5	-	-	-	-	-	-	-	-
3.	8.5	-	8.5	9.0	-	-	-	-	-	-	-	-
4.	13.5	16.5	16.5	16.5	15.5	15.0	16.0	17.0	-	-	14.0	14.5
5.	10.0	10.5	10.5	10.5	9.5	10.0	9.5	12.5	-	-	9.0	9.5
6.	-	18.0	-	19.0	19.0	19.0	19.0	20.0	18.0	20.0	17.5	19.0
7.	-	14.0	-	12.5	11.5	12.5	11.0	12.5	12.5	13.0	11.5	12.0

The farmers of Gomolava

L195	L203	L195	L187	L175	L139	L195	L205	L206	L76	L243	L174	L233
Sd												
1. 52.0	-	36.0	-	-	-	-	-	-	-	-	-	-
2. 19.5	19.0	17.5	-	-	-	-	-	-	-	-	-	-
3. 9.5	9.0	9.0	-	-	-	-	-	-	-	-	-	-
4. 17.0	17.5	18.0	16.0	-	17.5	15.5	16.5	-	-	16.5	17.0	-
5. 11.5	11.0	11.0	11.0	-	12.0	-	11.0	-	-	11.0	11.5	-
6. 21.5	20.0	-	20.0	21.0	20.0	(19.5)	19.5	22.0	20.0	20.0	20.5	19.5
7. 13.0	12.0	-	13.5	13.0	13.5	10.5	13.5	-	13.0	13.0	14.0	13.0

	$V ?$	$V ?$	$V ?$	
$P_{1} P_{2} P_{3} P_{4} M_{1} M_{2} M_{3}$ erupting				??
Length premolar row $P_{1}-P_{2}$	46.0	-	-	-
Length premolar row $P_{2}-P_{4}$	33.0	-	-	-
Length M_{1}	-	16.0	14.5	16.0
Width M_{1}	17.5	19.5	29.0	11.0
Length M_{2}	11.0	12.5	13.5	19.5
Width M_{2}			14.5	

	V44	V ?	V14	V ?	V ?	V45	V ?	V43	V ?
$\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4} \mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3}$	Sd								
2. Length symphysis	-	-	-	-	82.5	-	-	-	-
6. Length molar row	-	-	-	-	-	-	-	-	61.0
8. Length premolar row $\mathrm{P}_{2}-\mathrm{P}_{4}$	-	34.5	36.5	-	-	-	-	-	-
9. Length M_{1}	-	14.5	-	-	-	-	-	-	13.0
10. Width M_{1}	-	10.0	-	-	-	-	-	-	11.0
11. Length M_{2}	-	19.0	-	-	-	-	-	-	18.0
12. Width M_{2}	-	13.0	-	-	-	-	-	-	13.0
13. Length M_{3}	27.0	-	-	24.0	-	34.0	24.5	28.0	28.0
14. Width M_{3}	14.0	-	-	13.0	-	18.5	13.5	14.5	13.5
									V?
	V ?	V ?		V94		V ?	V ?	1.	r.
	Ss	Ss		Ss		Ss	Ss		Ss
1. Length, corner mandibula									
- alveolus C	-	(266.0)		-		-	-	-	
2. Length of the symphysis	-	-		-		-	-	117.5	
3. Depth of the horizontal ramus									
4. Length of the tooth row $P_{1}-M_{3}$	-	153.0		155.0		-	-	(168.0)	
5. Length of the tooth row $\mathrm{P}_{2}-\mathrm{M}_{3}$	125.5	124.5		123.0		-	-	(139.0)	
6. Length of the molar row	87.0	98.0		82.5		86.5	86.5	(94.0)	
7. Length of the premolar row $\mathrm{P}_{1}-\mathrm{P}_{4}$	4	68.5		75.0		-	-	(73.0)	
8. Length of the premolar row $\mathrm{P}_{2}-\mathrm{P}_{4}$	46.0	41.0		41.5		-	-	45.0	
9. Length M_{1}	17.5	15.0		-		18.0	-	19.5	
10. Width M_{1}	-	12.5		-		13.0	-	14.5	
11. Length M_{2}	21.0	20.5		22.0		23.0	(21.0)	26.5	
12. Width M_{2}	18.5	17.0		17.5		18.0	18.0	17.5	
13. Length M_{3}	47.5	45.5		40.0		42.0	(46.5)	45.5	
14. Width M_{3}	20.0	20.5		19.0		20.0	19.5	20.0	
15. Length of the diastema	-	18.0		26.0		-	-	21.5	
16. Max		-		-		-	-	-	33.5

[^2]| | V23 | V65 | V ? | V ? | V ? | V23 | V ? | V ? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Ss | Ss | Ss | Ss | Ss | Ssd | Ss | Ss |
| 1. | - | - | - | - | - | - | - | - |
| 2. | - | - | - | - | - | - | - | - |
| 3. | - | - | - | - | - | - | 51.5 | 63.0 |
| 4. | - | - | - | - | - | - | - | - |
| 5. | - | - | - | - | - | - | - | - |
| 6. | 90.5 | - | - | - | - | - | - | - |
| 7. | - | - | - | - | - | - | - | - |
| 8. | - | - | - | - | - | - | - | - |
| 9. | 18.0 | 18.0 | - | - | - | - | - | - |
| 10. | 13.0 | 14.0 | - | - | - | - | - | - |
| 11. | 24.0 | 23.5 | - | - | 24.0 | 20.5 | - | - |
| 12. | 17.5 | 19.0 | 16.5 | - | 20.0 | 18.0 | - | - |
| 13. | 48.0 | - | 41.0 | 42.0 | 44.5 | 45.5 | 45.5* | 45.0 |
| 14. | 19.5 | 20.5 | 19.5 | 18.0 | 22.0 | 20.0 | 20.5 | 20.5 |
| 15. | - | - | - | - | - | - | - | - |
| 16. | - | - | - | - | - | - | - | - |

	V3	V8	V94		L174	L27	L205
Mandibula	Ss	Ss	Ss		Sd	Sd	Sd
3.	-	56.5	-	6.	63.5	(66.0)	(69.0)
11.	25.0	-	22.0	7.	-	-	-
12.	18.5	-	17.5	8.	-	-	-
13.	46.0	46.5	(48.0)	9.	14.5	15.5	15.5
14.	20.5	19.0	21.0	10.	10.5	11.0	11.5
				11.	18.5	20.0	19.0
				12.	13.5	12.5	14.0
				13.	28.5	28.0	34.0
				14.	14.5	14.5	16.0

L28	L203	L243	L203	L221	L102	L221	L28	L174	L175	V221	V245
Sd											
6. -	-	-	-	-	-	-	-	-	-	-	-
7. 19.5	33.0	34.5	37.0	-	-	-	-	-	-	-	-
8. -	42.0	52.0	49.0	-	-	-	-	-	-	-	-
9. 16.0	14.6	16.0	14.5	15.0	-	-	-	-	-	-	-
10. 11.5	10.0	12.0	10.0	10.5	-	-	-	-	-	-	-
11. -	-	20.0	18.5	19.5	19.5	21.0	-	-	-	-	-
12. -	-	13.0	12.0	13.5	13.0	19.0	-	-	-	-	-
13. -	-	-	-	19.0	23.5	30.0	29.0	30.0	33.5	37.0	38.0
14. -	-	-	-	13.5	14.0	15.0	15.0	14.5	17.0	14.5	18.5

	V?	V?	V94	V47	V?	V36	V61	
Scapula	Sd	Sd	Sd	Sd	Sd	Ss	Ss	Ss
1. Minimum length of the neck	18.0	19.5	20.0	20.5	-	28.5	29.0	30.0
2. Max. length of the articular surface-	28.0	-	-	24.5	-	-	45.5	
3. Max. width of the articular surface -	20.0	-	-	19.5	-	-	31.0	
4. Max. width of the proc. articularis -		32.0	-	-	28.5	-	-	36.5

V ?	V ?	V?	V52	V95	V?	V?	L233	L?	L205
Ss	Sd	Sd	Ss						
1. 33.5	34.5	34.5	37.0	-	-	-	23.5	24.0	30.0
2. 41.0	40.0	-	-	35.5	43.0	-	29.5	-	-
3. 34.5	35.5	34.5	35.0	32.5	34.0	30.5	24.0	-	-
4. 49.0	43.5	-	-	47.0	54.0	-	34.5	-	-

The farmers of Gomolava

				V42	V83	V20	V ?	V7	V ?	V43	V ?	V60	V90	V56	V58	V89	V2
Humerus				Sd	Sd	Sd	Sd	Ss									
1. Maximum distal width				31.0	33.5	37.0	-	48.0	49.0	52.5	55.0	55.5	56.0	56.5	57.5	558.0	62.0
2. Width of the trochlea				24.0	26.0	34.0	-	-	-	40.0	43.0	41.0	41.0	- 42.5	44.0	$0 \quad 44.5$	46.5
3. Minimum width of the diaphysis				S	-	-	25.0	-	-	-	-	-	-	-	-	-	-
4. Foramen supratrochleare				-	-	-	-	-	-	-	-	-	-	-	-	-	-
$\begin{aligned} & \text { L206 } \\ & \text { Sd } \end{aligned}$	L189	L28	L233	L243	L197	L?	L28		243	L175	L221	L212		L123		V0215	V068
	Sd		Sd	Sd	Sd		Ssp		Sd	Ss							
1. 34.5	36.0	36.0	37.5	38.0	39.0	39.5	39.5		1.0	42.0	44.0	-		-		41.5	58.0
2. 28.5	-	31.0	29.0	29.5	32.0	-	29.0		2.0	32.5	36.5	26.0		29.5		-	46.0
	-	14.5	-	-	-	17.5	-		7.5	-	-	14.0		20.5		-	24.5
4. -	-	-	-	-	-	-	-	-		-	-	-		-		-	-
				V ?	V ?		V ?	v ?		V 2	V44	V ?		V?		V?	V ?
Radius				Ss	Ss		Ss	Ss		Ss	Ss	Ss		Ss		Ss	Ss
1. Maximum length				-	-		-	-		-	-	-		-		-	-
2. Maximum prox. width				37.5	37.5		43.5	-		-	-	-		-		-	-
3. Maximum distal width				-	-		-	42.0		42.0	42.5	42.		42.5		44.5	46.0
4. Minimum width of the diaphysis				s	-		-	-		-	-	-		-		-	-

V?	V96	V25	V95	V?	V6	V?	V?	V65	L219	L205	L189	L196	L187
Ss	Ss	Ss		Sd	Sd	Sd	Sd	Ss	Sd	Sd	Sd	Ss	Sd
1. -	-	-	-	-	-	-	-	-	124.0	-	-	-	-
2. -	-	-	31.0	36.5	37.0	37.0	-		-	25.5	26.0	37.0	-
3. 46.5	47.5	47.5	-	-	-	-	-	-	29.0	-	-	-	-
4. -	-	-	-	-	-	-	-	-	15.0	-	-	-	18.5

	V?	V?	V60	V?	V?	V?	V20	V?	V?	V?
Ulna	Sd									
1. Width of thearticularsurface	15.5	16.0	16.5	17.0	17.5	18.0	18.5	18.5	18.5	19.0
2. Min. diam. of the olecranon proces 22.5	-	19.5	-	-	-	-	-	-	-	

V60	V?	V?	V?	V52	V?	V?	V?	V34	V?	V?	V27	V?	V?	V?
Sd	Sd	Sd	Sd	Ssp	Ss									
1. 19.0	19.5	19.5	22.0	24.5	25.5	27.5	27.5	29.0	29.0	30.0	30.0	30.5	36.0	42.0
2. -	-	25.0	-	-	-	-	-	-	-	-	-	-	-	-

	V?	L83	L175	V23	V?		
Femar			Fibula		Ss	Ss	
	Sd	Sd	Sd		Maximum distal width	23.0	24.0
Maximum proximal width	40.0	44.0	44.0				
Length of the caput	-	25.0	27.0				
Width of the caput	-	22.5	21.0				

	V?	V?	V?	V7	V?	V?	V?	V?	V?	V?	V12	V?	V?	
Tibia	Sd	Sd	Sd	Sd	Ss									
1. Maximum proximal width		-	-	-	-									
2. Maximum distal width	25.0	26.5	-27.0	27.0	-	38.5	39.0	39.5	39.5	40.0	40.5	41.0	41.5	
3. Minimum width of the diaphysis	14.5	17.0	-	-	-	-	-	-	-	-	-	-	-	

V ?	L203	L76	L205	L198	L 195	L195	L189	L28	L123	V0215 V068		V0216					
Ss	Ss	Ss	Ss	Ss	Ss	Sd	Ss	Ss	Ss	Ss	Ss						
1. -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2. 35.5	35.0	37.0	38.0	38.5	39.5	25.5	26.0	27.0	28.0	28.5	29.0	29.5	35.5	36.5	39.0	37.0	35.5
3. -	-	-	-	-	-	16.5	-	-	16.0	19.5	-	-	-	-	-	-	-

Astragalus

1. Lateral length
2. Medial length
3. Width of the trochlea
4. Lateral thickness
5. Medial thickness

V?	V?	V?	V?	V?	V?	L243	L175	L80	V0215
Ss	Ss	Ss	Ss	Ss	Ss	Sd	Ss	Sd	Ss
41.5	44.5	51.0	52.0	53.0	56.0	-	41.0	-	50.0
44.0	49.0	45.0	47.0	46.0	51.0	-	43.5	-	40.5
25.0	30.5	31.0	30.0	33.5	34.5	23.0	25.0	22.5	31.0
23.0	26.5	28.0	28.5	52.5	30.0	-	-	-	26.0
22.0	29.5	40.0	30.0	31.5	32.0	-	23.0	-	30.0 deformed

Calcaneum

	L203	L171	L219	L75		
Sd	Sd	Sd	Sd	L219		
Phalanx I					Phalanx II	
Maximum length	33.0	37.5	38.0	(43.5)	26.0	
Maximum prox. width	15.0	18.0	17.5	18.0	17.0	
Maximum dist. width	14.0	16.5	16.0	-	16.5	
Minimum width of the diaphysis	11.5	15.0	14.0	14.0	14.0	

Cervus elaphus

	V?	V?	V44	V66	L175	
Maxilla 81.0 - - - Length molar row - 52.5 - - Lengthwith molar row						
Length premolar row	25.5	-	25.5	26.0	-	
Length M ${ }^{3}$	22.5	-	23.0	23.5	-	
Width M 3				-		

| | V8 | V42 | V? | V? | V? |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Mandibula | | | | | |
| Length milk molar row | 56.0 | - | - | 59.0 | - |
| Length p_{3} | 26.5 | 29.0 | 31.0 | 28.0 | - |
| Width p_{3} | 11.0 | 13.0 | 12.0 | 11.5 | - |
| Length M_{1} | - | - | - | 25.0 | 24.0 |
| Width M_{1} | - | - | - | 13.0 | 13.0 |
| Length M_{2} | - | - | - | - | 28.0 |
| Width M_{2} | - | - | - | - | 14.0 |

	V?	V?	V92	V29	V?	V?	V?	V?	V?	V?
Mandibula										
Min. depth of the horizintal ramus behind the symphysis	30.5	-	-	-	-	-	-	-	-	-
Length of the molar row	-	97.0	-	-	-	-	-	-	-	-
Length of the premolar row	-	-	49.0	49.0	51.5	-	-	-	-	-
Length M_{1}	-	25.5	-	19.0	-	23.5	-	-	-	-
Width M_{1}	-	15.0	-	13.0	-	13.0	-	-	-	-
Length M_{2}	-	28.5	-	-	-	27.5	27.0	-	-	-
Width M_{2}	-	17.0	-	-	-	14.0	15.0	-	-	-
Length M_{3}	-	34.5	-	-	-	-	33.0	34.5	-	-
Width M_{3}	-	16.0	-	-	-	-	15.0	15.0	-	-
Width condyluls mandibularis	-	-	-	-	-	-	-	-	31.5	29.5

	V?	V?	V14	V?	V?	V26	V?	V?	V?
Scapula									
Minimum width of the neck	35.5	35.0	36.5	38.0	45.0	47.0	51.0	-	-
Length of the articular surface	-	-	-	48.5	-	51.5	-	52.5	47.0
Width of the articular surface	-	-	-	45.0	47.5	50.5	-	52.0	42.0
Width of the processus articularis	-	-	-	-	69.0	70.5	-	-	-

	V?	V60	V3	V ?	V ?	V ?	V?	V?
Humerus								
1. Maximum distal width	56.0	58.0	62.0	63.0	63.5	64.0	65.0	66.5
2. Width of the trochlea	51.0	54.0	66.0	56.0	58.0	57.0	59.0	60.5

V?	V?	V92	V94	V?	V?	V?	L115	L206

| | $V 65$ | $V 56$ | $V 8$ | $V 85$ | $V 56$ | $V 42$ | $V ?$ | $V 95$ | $V 18$ | $V 4$ | $V 60$ | $V 8$ | $V 14$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Radius | | | | | | | | | | | | | |
| Maximum proximal width | 61.0 | 62.5 | 62.5 | 63.5 | 65.0 | 65.0 | 68.0 | 70.0 | 57.0 | - | - | - | - |
| Width of the prox. articularsurface | 57.5 | 58.0 | 59.5 | 59.0 | 60.0 | 67.5 | 63.5 | 66.0 | 52.0 | - | - | - | - |
| Maximum distal width | - | - | - | - | - | - | - | - | - | 52.0 | 53.5 | 56.5 | 62.0 |
| Width of the distal articular surface | - | - | - | - | - | - | - | - | - | 51.5 | 51.0 | 52.5 | 57.0 |

| | V? | V20 | V97 | V2 | V47 | V5 | V94 | V50 | V64 | V60 | V10 | V37 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Metacarpus | | | | | | | | | | | | |
| 1. Maximum proximal width | 42.0 | 44.0 | 44.0 | 45.0 | 47.0 | 48.0 | 48.0 | 48.0 | 48.5 | 49.0 | - | |
| 2. Maximum proximal thickness | 31.0 | 33.5 | 31.0 | 31.5 | 33.5 | 33.0 | 33.5 | 33.5 | 36.0 | 34.5 | - | |
| 3. Maximum distal width | - | - | - | - | - | - | - | - | - | - | 41.5 | 42.0 |
| 4. Maximum distal thickness | - | - | - | - | - | - | - | - | - | - | 25.0 | 25.0 |

V5	V4	V2	V90	V15	V29	V64	L205	L102	V0216	V0216 V0216	V068
1.	-	-	-	-	-	-	-	51.0	-	-	-
2.	-	-	-	-	-	-	-	27.5	-	-	-
3. 43.0	43.0	43.5	43.5	45.0	47.0	50.5	-	46.5	-	-	-
4. 26.5	28.5	26.0	-	26.5	27.0	30.5	-	-	42.0	43.5	42.5

				V98 V?			V8	V62	V ?	V?	$V ?$	$V ?$	V49	$V ?$	L243	V0216
Pelvis																
Length acetabulum					(49.0)	51.5	52.5	54.0	57.0	57.5	58.5	59.0	-	-	53.5	61.0
Thickness rim					5.5	7.2	8.0	-	13.5	11.5	6.5	14.5	(13.5)	15.0	-	-
Sex					7	\%	¢	-	0^{*}	\%	¢	δ^{*}	δ°	${ }^{\circ}$	-	-
					$V ?$	$V ?$		V3	V96	V49		V ?	V ?	V?	V?	$V ?$
Tibia																
Maximum distal width					51.0	52.0		52.0	52.5	53.0		54.0	54.0	54.5	55.5	56.5
V30	$V ?$	$V ?$	V?	$V ?$		V ?	V?	$V ?$	V ?		?	V ?	$V ?$	V0215	V0216	V068
57.0	56.5	57.0	57.0	57.5	5	57.5	59.0	59.5	60.0		1.5	62.5	63.0	53.5	53.0	55.5

	V?	V20	V97	V2	V47	V5	V9.4	V50	
Metatarsus									
1. Maximum prox. width	42.0	44.0	44.0	45.0	47.0	48.0	48.0	48.0	48.5
2. Maximum prox. thickness	31.0	33.5	31.0	31.5	33.5	33.0	33.5	33.5	36.0
3. Maximum distal width	-	-	-	-	-	-	-	-	-
4. Maximum distal thickness	-	-	-	-	-	-	-	-	-

V60	$V ?$	$V 15$	$V 47$	$V 47$	$V 42$	$V 31$	$V 0216$	$V 0216$	$V 0215$	$V 068$
1.49 .0	54.0	-	-	-	-	-	-	-	-	
2	34.5	38.0	-	-	-	-	-	-	-	-
3.	-	-	45.0	46.0	47.0	52.0	52.0	51.0	44.0	43.0
4.	-	-	27.0	29.5	29.0	30.0	32.0	33.0	26.5	27.0

	V?	V?	V43	V2	V65	V55	V28	
Astragalus								
1. Lateral length	55.0	57.5	58.0	58.5	59.5	61.5	64.5	-
2. Medial length	49.0	53.5	54.0	57.5	56.0	58.5	61.0	-
3. Lateral thickness	39.5	33.5	31.5	31.5	32.0	33.5	35.5	-
4. Medial thickness	34.5	33.0	32.5	32.5	34.0	34.0	37.0	-
5. Width of the trochlea	34.5	38.0	35.5	36.5	37.5	39.5	40.5	38.0

V40	L205	L211	L?	V0216	V0216	V0216
1. -					61.0	63.5
$2 .-$	50.5	-	-	57.5	60.0	64.0
$3 .-$	30.5	-	-	33.0	33.0	30.0
$4 .-$	31.0	33.0	-	33.0	35.0	38.0
5.43 .0	35.5	35.0	37.5	36.5	40.0	41.0

V? V? V60 V61 V? V? V? V? V56 V? V? V42 V14 V? V?

Phallanx I

| 1. Lateral length | 58.0 | 59.0 | 59.5 | 60.0 | 60.0 | 61.0 | 61.5 | 62.0 | 63.0 | 63.0 | 63.0 | 64.0 | 65.0 | 65.0 | 65.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2. Maximum prox. width | 24.0 | 24.0 | 28.0 | 23.0 | 23.0 | 26.5 | 23.5 | 26.0 | 24.0 | 26.5 | 25.0 | 25.5 | 25.0 | 25.0 | - |
| 3. Maximum dist. width | 21.0 | 23.0 | 27.0 | 21.5 | 21.0 | 25.0 | 22.5 | 23.5 | 22.5 | 24.5 | 25.0 | 23.5 | 23.5 | 24.0 | 24.0 |
| 4. Minimum width diaphysis | 18.5 | 29.5 | 24.0 | 19.5 | 18.0 | 21.0 | 21.0 | 21.5 | 18.5 | 20.5 | 21.5 | 20.5 | 20.5 | 21.5 | 18.5 |

V4	V48	V ?	V ?	V44	V ?	V ?	V ?	V?	V?	L?	V068	V0216	V0216	V0216	V0216	V0216	V068
1. 66.5	67.0	67.0	-	-	-	-	-	-	-	62.5	-	56.5	56.5	58.5	62.5	61.0	59.5
2. 26.0	27.0	25.5	24.0	25.0	25.5	26.0	-	-	-	22.0	-	21.0	22.0	22.5	25.5	24.0	23.5
3. 23.0	24.5	23.5	-	-	-	-	21.0	22.0	-	21.0	23.5	21.0	21.0	21.0	23.0	22.5	21.5
4. 20.0	21.5	20.0	-	-	-	18.5	17.5	19.0	-	18.0	-	18.0	18.5	19.0	20.0	19.5	19.0

	V6	V?	V2	V?	V?	V?	V61	V?	V6	V44	V?	L.233	L102	L139	V0216	V0215
Phallanx II																
1.	41.5	41.5	44.0	44.0	44.5	44.5	46.0	46.0	46.5	49.0	-	43.0	44.5	-	42.5	44.5
2.	22.5	22.5	25.0	21.5	23.5	22.5	23.0	25.0	25.5	25.5	-	22.0	22.5	24.0	22.0	25.0
3.	18.5	17.5	20.5	17.5	21.0	17.0	18.5	21.5	20.5	20.5	25.4	19.0	21.0	-	19.5	23.0
4.	17.0	17.0	18.0	16.0	17.0	16.0	17.0	18.5	19.5	19.0	-	15.5	16.0	17.5	16.0	17.5

	V20	V90	V?	V51	V61	L83	
Phallanx III						-	53.5
Maximum length	51.0	55.0	56.5	88.5	66.0	-	
Dorsal length	44.5	-	46.0	-	52.5	46.0	51.0

Capreolus capreolus

	L123	L203
Ulna		
Width articular surface	17.0	16.0
		juv.

	L92	L189	L135
Metacarpus		Calcaneum	53.0
Maximum proximal width	23.5	Maximum length	-
		Maximum height	22.0

Bos taurus - Bos primigenius

Horn-core	V78		V29	V43	V8	V44	V44
	r.	I.	I.	r.	I.	I.	r.
1. Maximum circumference at the base	162.0	163.0	165.0	165.0	170.0	185.0	200.0
2. Maximum diameter	55.0	55.5	57.5	57.5	58.0	62.0	69.5
3. Minimum diameter	45.0	44.0	43.5	41.5	44.0	51.0	53.0
4. Index $(3 \times 100) / 2$	81.5	79.3	75.6	72.2	76.0	82.3	76.3

	V43	V62	V96	L212	L174	L203	L76	L219	L205	
r.	I.	r.								
	Bt	BNt	Bt							
1.	200.0	230.0	-	125.0	125.0	135.0	135.0	190.0	210.0	192.0
2.	69.0	79.5	-	45.0	45.0	47.0	41.0	63.0	73.0	-
3.	55.5	64.5	52.5	32.0	34.0	37.0	33.0	51.0	57.0	-
4.	80.5	81.3	-	71.0	75.5	65.0	80.0	81.0	79.5	-

Maxilla

Length milk molar row 60.5

	V 8	$\mathrm{~V} ?$	V 63	$\mathrm{V84}$	
Maxilla	Bt	Bt	Bt	Bt	Bt
Length molar row	-	90.5	-	-	-
Length premolar row	-	-	-	64.0	-
Length M^{1}	-	36.5	-	25.0	-
Width M^{1}	-	22.5	-	23.5	-
Length M^{2}	30.0	33.0	-	30.0	25.0
Width M^{2}	23.5	24.0	30.0	23.0	20.0
Length M^{3}	36.0	30.0	22.5	-	26.0
Width M^{3}	22.5	21.5		18.5	

Mandlbula

1. Length milk molar row
2. Length p_{3}
3. Width p_{3}
4. Length M_{1}
5. Width M_{1}
6. Length M_{2}
7. Width M_{2}

V95	V?	V47	V?	V?	V90	V22
-	-	60.0	62.5	-	-	-
34.5	38.5	32.5	32.5	34.0	31.0	38.5
15.0	13.0	13.0	12.5	15.0	14.5	12.5
-	-	-	33.0	30.5	-	-
-	-	-	13.0	14.5	-	-
-	-	-	34.5	-	-	
-	-	-	13.5	-	-	

The farmers of Gomolava

	V ?	V60	L243	L175	L28	L174	L203	L203	V068
1.	-	-	52.5	54.0	56.5	-	-	-	64.5
2.	34.5	33.5	27.0	28.0	-	(28.5)	25.0	-	36.5
3.	12.0	-	12.5	12.0	-	12.0	12.5	-	14.5
4.	-	-	-	-	-	-	22.0	23.0	-
5.	-	-	-	-	-	-	13.0	12.5	-
6.	-	-	-	-	-	-	27.5	26.5	-
7.	-	-	-	-	-	-	12.5	13.0	-

	V33	V10	V55	V6	V?	V ?
Mandibula	Bt	Bt	Bt	Bt	Bt	Bt
1. Length; backside M_{3} - backside foramen mentale	-	-	-	-	-	-
2. Depth behind the symphysis	26.5	27.0	27.0	29.0	29.5	31.0
3. Depth before M_{1}	-	-	-	-	-	-
4. Length of the tooth row	-	-	-	-	-	-
5. Length molar row	-	-	-	-	-	-
6. Length premolar row	-	-	-	-	-	-
7. Length M_{1}	-	-	-	-	-	-
8. Width M_{1}	-	-	-	-	-	-
9. Length M_{2}	-	-	-	-	-	-
10. Width M_{2}	-	-	-	-	-	-
11. Length M_{3}	-	-	-	-	-	-
12. Width M_{3}	-	-	-	-	-	-

	V ?	V ?	V ?	V ?	V62	V ?	V ?	V ?
	Bt							
1.	-	-	-	-	-	-	-	-
2.	-	-	-	-	-	-	-	-
3.	-	-	-	-	-	-	-	-
4.	-	150.0	-	-	-	-	-	-
5.	-	95.0	-	-	-	-	-	-
6.	-	57.0	63.0	57.0	59.5	-	-	-
7.	-	-	-	26.5	27.0	28.0	27.5	-
8.	-	-	-	15.0	15.5	13.0	14.5	-
9.	27.5	-	-	30.0	-	29.0	31.5	37.0
10.	16.5	-	-	15.0	-	12.5	14.0	16.0
11.	37.0	-	-	-	-	-	-	-
12.	16.5	-	-	-	-	-	-	-

	V32	V ?		L243		L203		L169	L77	L203	L211	V0215	V0215	
	Bt	Bt		Bt		Bt		Bt	Bt	Bt	Bt	Bt	Bt	
1.	-	-		182.5		-		-	-	-	-	-	-	
2.	-	-		125.0		24.5		28.0	24.0	31.0	-	27.0	25.5	
3.	-	-		27.0		-		-	-	51.0	-	44.0	-	
4.	-	-		124.5		-		-	-	-	-	130.5	-	
5.	-	-		78.5		-		-	-	-	-	84.5	-	
6.	-	-		49.0		51.0		46.0	53.0	52.0	54.0	50.0	-	
7.	-	-		20.0		-		-	-	21.0	23.0	19.0	-	
8.	-	-		14.0		-		-	-	14.5	16.5	14.5	-	
9.	26.0	-		23.0		-		-	23.5	24.5	-	23.0	-	
10.	15.0	-		15.0		-		-	15.0	16.0	-	16.0	-	
11.	36.5	39.5	39.5	32.0		-		-	-	-	-	35.0	-	
12.	14.5	16.5	15.0	15.5		-		-	-	-	-	15.0	-	
				V ?	V ?		V?	V20	V ?	V ?	V95	V ?	V ?	V50
Scap				Bt	Bt		Bt	Bt	Bt	Bt	Bt	Bt	Bpr	Bpr
1. M	m leng	the n		40.5	47.5		49.5	54.0	54.5	58.0	60.0	-	67.0	72.0

	V ?	V7	V?	V20	V?	V?	V95	V ?	V?	V50
	Bt	Bpr	Bpr							
2. Length of the articular surface	51.5	56.0	59.0	59.5	-	-	62.0	63.0	-	-
3. Width of the articular surface	44.5	50.5	45.0	51.0	-	-	53.0	49.5	-	-
4. Length proc. articularis	63.5	72.0	67.5	71.0	-	-	70.0	-	-	-

	V	V	V	V	V	V	V	
Humerus	Bt	Bpr	Bpr	Bpr	Bpr	Bpr	Bpr	Bt
1. Maximum distal width	76.0	94.0	97.0	98.0	98.5	-	-	60.5
2. Width of the trochlea	74.5	90.5	89.0	88.0	86.5	78.5	78.0	55.0
3. Smallest width of the diaphysis	-	-	-	-	-	-	-	-

	L102	L205	L205	L196	L203*	L139*	L139*	V0215	V0?	V068
	Bt									
1.	63.0	70.0	77.0	-	-	-	-	-	76.5	-
2.	61.0	68.0	70.0	67.0	68.5	71.5	71.0	68.0	75.5	74.0
3.	26.5	29.0	-	-	-	31.0	33.0	-	-	-

- gnawing marks

The farmers of Gomolava

	V0215	L197	L189	L195	L114	L169	L175	L75
	Bt							
1.	201.0	168.0	170.0	(172.0)	177.0	179.0	182.0	-
2.	63.0	48.5	48.5	-	50.5	53.0	60.0	48.0
3.	35.0	31.5	31.0	-	30.0	33.0	36.5	30.5
4.	59.0	46.0	46.0	50.0	48.0	53.0	50.0	-
5.	28.0	23.5	26.0	25.0	24.0	26.5	26.0	-
6.	35.0	26.5	27.0	30.5	29.0	30.5	34.0	-
7.	33.0	19.0	20.0	20.5	21.5	21.0	24.0	-
8.	31.3	29.9	28.5	-	28.2	29.6	32.0	-
9.	17.8	15.7	15.8	17.7	16.4	17.0	18.7	-
10.	121.0	101.0	102.0	103.0	106.0	107.0	109.0	-

	L205	L196	L205	L233	L195	L83	L205	L203	L197	L196
	Bt									
1.	-	-	-	-	-	-	-	-	-	-
2.	51.5	51.5	52.0	53.0	56.5	-	-	-	-	-
3.	31.0	-	31.0	33.0	32.0	-	-	-	-	-
4.	-	-	-	-	-	49.5	60.0	-	-	-
5.	-	-	-	-	-	27.0	36.5	-	-	-
6.	26.5	-	27.0	-	-	-	-	24.0	28.5	31.0
7.	21.0	-	21.0	-	-	-	-	19.0	21.5	21.5
8.	-	-	-	-	-	-	-	-	-	-
9.	-	-	-	-	-	-	-	-	-	-
10.	-	-	-	-	-	-	-	-	-	-

| | V 15 | $\mathrm{~V} ?$ | $\mathrm{~V} ?$ | V 54 | V 65 | V ? | V 90 | $\mathrm{~V} ?$ | L 28 | L 195 | L 206 | L 243 | L 123 | V 0216 |
| :--- |
| Pelvis | Bt |
| Length of the acetabuleum | 62.5 | 63.0 | 66.0 | 68.5 | 70.0 | 72.5 | 73.0 | 75.5 | 49.0 | 53.5 | 54.0 | 57.5 | 67.0 | 58.0 |

| | V 62 | $\mathrm{~V} 57 ?$ | V 22 | V 7 | V 48 | V 43 | V 20 | V 37 | V 5 | V 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Femur | Bt |
| Length of the caput | - | 56.0 | 64.0 | - | 66.5 | 67.5 | 78.0 | - | - | |
| Width of the caput | 52.0 | 43.0 | 46.5 | 47.0 | 48.0 | 44.0 | - | 45.0 | 48.0 | - |
| Maximum distal width | - | - | - | - | - | - | - | - | - | 77.5 |

	V 12	V 16	V 20	V 14	V 16	V ?	V ?	V 85	V 4
TIbla	Bt	Bpr							
1. Maximum distal width	63.0	63.5	63.5	65.0	68.0	70.0	71.0	72.5	78.0
2. Minimum width of the diaphysis	-	-	-	-	-	-	-	-	-

| | L164 | L 219 | L 75 | L 206 | L 140 | L 176 | L 121 | L 189 | V 0215 | V 068 | B 0216 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Bt | Bpr |
| 1. | 51.0 | 57.0 | 57.0 | 57.5 | 61.0 | 63.5 | 64.5 | 64.5 | 63.0 | 68.0 | Maximum proximal width 113.5 |
| 2. | 29.0 | - | - | 33.5 | - | - | - | - | - | - | |

Calcaneum
Maximum length
Maximum width
Maximum height

V42	V?	V99	V?	V?	L203	L205	L203	L203	V068
Bt									
125.5	129.5	133.5	137.5	140.5	129.5	134.5	142.0	-	151.0
42.5	47.5	47.0	49.0	47.0	43.0	-	45.5	40.5	(54.0)
46.0	53.0	52.0	55.5	54.0	54.0	-	49.0	-	-

Patella
Maximum length
L205 L?

Bt Bt
$57.0 \quad 54.0$

Astragalus

1. Lateral length
2. Medial length
3. Width of the trochlea
4. Thickness of the trochlea
5. Lateral thickness
6. Medial thickness

V92	$\mathrm{V} ?$	V 92	V 56	V 29	V 40	V ?	V 18	V ?	$\mathrm{V} ?$	V ?	V 4
Bt											
64.0	64.5	67.5	68.5	69.0	69.0	69.0	70.0	-	-	-	-
60.0	59.5	61.0	65.5	63.5	63.0	-	66.0	67.5	69.0	70.0	-
41.0	43.0	44.5	61.0	-	62.5	44.0	44.0	-	50.0	-	-
29.5	30.5	31.0	30.0	-	32.5	33.0	33.0	-	37.5	-	-
37.0	35.0	38.0	38.0	39.5	38.0	40.0	39.5	-	-	-	44.0
36.5	36.5	38.0	38.0	39.5	39.5	-	40.0	-	43.5	43.5	-

The farimers of Gomolava

	L203	L205	L75	L139	L213	L174	L28		V0215	V0215
	Bt		Bt	Bt						
1.	62.5	65.0	(65.5)	56.0	67.0	70.0	72.0		70.0	71.0
2.	56.5	60.0	61.0	52.0	60.5	64.5	65.0		64.5	65.5
3.	38.0	42.0	43.0	36.5	45.5	48.5	46.5		45.0	43.5
4.	27.5	31.5	32.0	25.0	-	33.0	33.5		31.5	33.0
5.	35.0	37.5	36.5	31.5	37.5	39.0	39.5		40.0	39.0
6.	35.0	38.0	37.0	32.0	-	42.0	41.0		39.5	38.0
			L171		L154	L243		L174		L189*
Centrotarsal			Bt		Bt	Bt		Bt		Bt
Maximum width			54.5		56.0	57.5		61.0		53.0

	V2	V1	V8	V84	V16	V58	V90	V1	V20	V90	V60
Metatarsus	Bt										
1. Maximum length	-	-	-	-	-	-	-	-	-	-	-
2. Maximum proximal width	48.0	55.0	52.0	55.0	56.0	49.5	53.0	45.0	46.0	-	-
3. Maximum prox. thickness	48.0	53.0	(48.5)	48.0	51.0	51.0	52.5	46.5	46.5	-	-
4. Maximum distal width	-	-	-	-	-	-	-	-	-	50.0	50.0
5. Maximum distal thickness	-	-	-	-	-	-	-	-	-	30.5	28.5
6. Minimum width of the shaft	-	-	-	-	-	-	-	-	-	24.5	-
7. Minimum thickness of the shaft	-	-	-	-	-	-	-	-	-	27.5	-
8. Index (2×100)/1	-	-	-	-	-	-	-	-	-	-	-
9. Index (6×100)/1	-	-	-	-	-	-	-	-	-	-	-
10. Height at the withers	-	-	-	-	-	-	-	-	-	-	-

	V7	V44	V37	V6	V4	V44	V15	V9	V93	V2	V9	V10	V1	V63	V22	V?
	Bt															
1.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4.	50.5	51.0	50.5	51.5	52.0	53.0	53.0	53.0	54.0	54.0	54.5	55.0	60.0	60.0	60.5	62.0
5.	29.5	30.0	27.5	28.5	39.0	31.0	30.5	29.5	33.0	28.0	31.0	29.5	31.5	32.5	33.5	35.0
6.	-	-	-	-	-	-	-	-	36.5	-	-	-	-	-	-	-
7.	-	-	-	-	-	-	-	-	28.0	-	-	-	-	-	-	-
8.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	L171	L169	L243	L203	L73	L206	L243	L219	L206	L115	L197	L203	L233	L243	L243	V068
	Bt															
1.	172.5	197.0	(204.5)	214.5	218.5	-	-	-	-	-	-	-	-	-	-	-
2.	49.0	48.0	41.0	47.0	49.5	40.0	49.5	-	-	-	-	-	-	-	-	45.0
3.	47.0	-	-	45.0	44.0	-	47.0	-	-	-	-	-	-	-	-	47.0
4.	53.0	49.0	46.0	50.0	58.0	-	-	43.0	43.0	47.0	48.5	51.0	51.5	52.5	50.5	-
5.	20.0	28.0	25.0	25.0	33.5	-	-	25.0	(25.0)	27.0	26.5	28.0	27.0	30.0	-	-
6.	26.0	25.0	23.5	30.0	28.5	-	-	-	-	-	-	-	-	-	-	-
7.	29.0	25.0	24.5	21.5	27.0	-	-	-	-	-	-	-	-	-	-	-
8.	29.4	24.3	20.0	21.4	22.7	-	-	-	-	-	-	-	-	-	-	-
9.	15.1	12.7	11.5	14.0	13.0	-	-	-	-	-	-	-	-	-	-	-
10.	92.0	105.0	109.0	114.0	116.5	-	-	-	-	-	-	-	-	-	-	-

	L 195	L 196	L 169	L 28	L 175	L 233	L 76	L 83	L 28	L 233	L 203
Phallanx I	Bt										
1. Maximum lateral length	47.0	51.0	51.0	52.0	52.5	53.0	52.5	53.5	54.0	54.0	54.5
2. Maximum proximal width	25.5	25.0	25.0	27.0	24.5	-	-	29.0	29.5	31.0	24.0
3. Maximum distal width	24.0	23.0	25.0	25.5	24.0	23.0	26.5	28.0	27.0	29.0	33.0
4. Minimum width of the diaphysis	21.0	21.0	23.0	23.0	20.5	20.0	26.5	25.0	23.5	27.0	27.5

	L 164	L 75	L 205	L 28	L 129	L 136	L 123	L 196	L 73	L 73	L 175	L 187	L 169	L 28
	Bt													
1.	55.0	55.0	53.5	57.0	57.0	58.5	61.0	61.0	61.0	63.0	65.0	65.5	-	-
2.	28.5	27.0	28.5	28.0	31.0	29.0	31.0	30.5	29.0	28.5	30.0	28.5	25.0	27.5
3.	27.0	26.0	27.0	24.5	28.5	21.5	27.5	29.0	27.5	28.0	29.5	28.5	24.0	26.5
4.	23.0	22.5	22.5	22.5	26.5	28.0	25.5	23.5	24.5	24.0	24.5	24.0	22.0	23.5

	L 164	L 23	L 206	L 169	L 189	L 205	L 203	L 219	L 206	V 0215				
	Bt													
1.	-	-	-	-	-	-	-	-	-	-	65.5	66.0	63.0	63.0
2.	(34.0)	-	-	-	-	-	-	-	-	-	34.0	28.5	33.5	30.0
3.	22.0	23.5	24.0	25.5	28.5	29.0	30.5	32.0	30.0	33.0	33.0	28.5	29.5	29.0
4.	29.5	20.0	21.0	25.5	25.5	-	-	29.0	-	30.0	30.0	26.0	27.0	26.0
20.0														

	V 44	V ?	V ?	L 139	L 176	L 28	L 83	L 169	L 28	L 169
Phallanx II	Bpr	Bpr	Bpr	Bt						
1.	52.0	47.0	48.0	33.5	33.5	34.5	37.5	37.5	39.5	36.5
2.	42.0	38.0	39.5	27.0	26.0	28.0	29.0	28.5	32.5	27.0
3.	34.5	35.0	36.0	25.0	22.0	24.5	25.0	25.5	28.0	21.0
4.	33.5	31.0	31.0	21.0	21.0	23.0	23.5	23.0	26.5	21.0

	L 219	L 200	L 203	L 203	L 205	L 28	L 139	L 176	L 205	L 28	L 169	L 83	L 203
	Bt												
1.	38.5	-	-	-	-	32.5	34.0	34.5	34.5	35.0	36.0	37.5	39.0
2.	33.0	27.0	29.0	33.5	-	25.0	27.0	26.0	29.5	28.0	27.0	29.0	33.5
3.	28.5	24.5	25.5	29.0	34.5	22.0	25.0	23.0	27.0	25.5	22.0	24.5	29.0
4.	25.0	23.0	-	26.0	-	19.0	21.0	21.0	24.0	23.0	21.0	23.0	16.5

	L 205	L 28	L 123	L 219	L 203	L 174	L 140	L 169	L 195	L 169	V 0215	V 0215
	Bt	Bpr										
1.	40.0	40.5	41.5	43.5	-	-	-	-	-	-	44.5	48.0
2.	27.5	32.5	33.0	32.0	29.0	27.0	28.0	28.5	32.0	33.5	35.0	34.0
3.	24.0	24.0	24.0	28.0	-	-	24.5	-	-	-	31.0	29.0
4.	23.0	26.0	23.5	25.0	27.5	21.0	22.0	-	-	24.0	29.0	30.0

	$\mathrm{V} ?$	$\mathrm{~V} ?$	V 44	$\mathrm{~V} ?$	$\mathrm{~V} ?$	L 28	L 28	L 212
Phallanx III	Bt	Bt	Bt	Bpr	Bpr	Bt	Bt	Bt
Maximum length	71.0	76.5	(78.5)	80.5	82.5	67.0	69.5	70.0
Dorsal length	51.0	-	-	59.5	-	50.0	52.5	57.5

Capra hircus
Ovis aries

	V8	V60	V89	L102	V85	
Horn-core						
Circumference at the base	-	-	-	110.0	-	
Maximum diameter	32.0	40.0	35.0	35.0	52.0	42.5
Minimum diameter	22.0	25.5	24.5	25.0	33.0	30.0
Length outer curve	-	-	-	122.0	-	
Length inner curve	-	-	-	95.0	-	

Capra/Ovis		
	L28	L187
Maxilla $\mathrm{p}^{1} \mathrm{p}^{2} \mathrm{p}^{3}$?		
Length of the milk molar row	34.5	33.5

	L 164	L198		L192		L164	L205
Maxilla M $\mathbf{M}^{\mathbf{M}} \mathbf{M}^{\mathbf{M}}{ }^{3}$							
Length of the tooth row	(71.0)	-		-		-	-
Length of the molar row	(25.5)	45.0		45.0		46.0	25.5
Length of the premolar row	49.0	-		-		-	-
	L28		L174		L196		L96
Mandidula $\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}$							
1. Length of the milk molar row	31.5		33.5		32.0		30.0
2. Length p_{3}	18.5		20.0		18.0		16.5
3. Width p_{3}	6.0		7.0		6.0		6.0

Mandibula $\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3} \mathbf{M}_{1}$												
1.	35.0	32.5	33.0	29.0	33.5	32.0	30.0	32.5	31.0	(32.0)	31.5	-
2.	18.5	18.5	16.0	17.0	17.0	17.5	16.0	19.0	17.0	16.0	17.0	16.0
3.	5.0	7.5	-	6.0	7.0	7.5	7.0	7.0	7.0	7.5	6.5	7.0
	L75		L206					L211		L171		L102
Mandlbula												
1.	29.0		31.0					33.0		31.5		-
2.	14.5		16.0					-		-		16.5
3.	8.0		7.0					-		-		7.0

Mandibula, adult

1. Length; backside M_{3}
- backrim foramen mental

2. Depth behind the symphysis
3. Depth behind M_{3}
4. Length of the tooth row

	L28	L205	L196	L164	L205	L203	L204	L174		
Scapula										
L83										

			L196	L179			L176		L196	L221	L233
Humerus											
1. Maximum distal width			26.5		28.0		28.0		28.0	28.5	28.5
2. Width trochlea			27.5		27.0		27.0		26.5	28.0	27.5
3. Minimum width of the diaphysis			13.5		-		13.5		-	-	13.0
	L243	L171	L233	L197		L28		L 175	L203	L28	L174
1.	28.5	29.5	30.0	30.0		31.0		32.0	33.0	33.5	-
2.	27.0	28.5	29.0	29.0		27.5		31.0	30.5	30.0	26.0
3.	-	-	-	-		-		17.5	-	28.0	13.0

	L221	L206	L 164	L212	L219	L75
Radius						
1. Lateral length	140.0	-	-	-	-	-
2. Medial length	145.0	-	-	-	-	-
3. Maximum proximal width	29.5	27.0	29.5	29.5	30.0	30.0
4. Width of the prox. articular surface	27.0	25.0	27.5	27.5	28.0	27.5
5. Maximum distal width	28.5	-	-	-	-	-
6. Width of the distal articular surface	23.0	-	-	-	-	-
7. Minimum width of the diaphysis	18.0	15.0	-	16.0	-	-

	L164	L233	L196	L206	L280	L75	L205	L196	L164
1.	-	-	-	-	-	-	-	-	-
2.	-	-	-	-	-	-	-	-	-
3.	30.5	30.5	31.0	32.5	(35.0)	-	-	-	-
4.	28.0	27.5	28.0	30.0	(34.0)	-	-	-	-
5.	-	-	-	-	-	28.0	29.0	29.0	29.5
6.	-	-	-	-	-	23.5	23.0	23.0	24.5
7.	-	16.5	16.0	-	-	-	-	-	16.0

	L28	L203	L 196	L206	L?
Metacarpus					
1. Maximum length	118.0	118.0	118.0	130.5	-
2 Maximum proximal width	21.5	24.0	22.0	23.0	-
3. Maximum distal width	24.0	24.5	23.0	24.5	25.5
4. Smallest width of the diaphysis	12.5	13.0	12.0	13.5	-
5. a	10.0	11.0	11.0	10.5	10.5
6. b	15.0	14.0	15.0	15.5	15.5
7. Index ($a \times 100$ /b	66.6	78.6	73.5	68.0	68.0

Gallus gallus

Humerus

Maximum length 69.5
Maximum proximal width 19.5
Maximum distal width 15.0

Ulna

Maximum proximal width

	L211
Tarsometatarsus	
Maximum length	14.0
Maximum proximal width	14.0
Maximum distal width	24.0
Length of the spur	8.5
Max. diameter spur	6.0

[^0]: （）identification uncertain

[^1]: ＊shed antler or antler fragment

[^2]: measured along the alveolus

